by Rajashri on  September 13, 2008 at 4:54 PM Research News
 Skin can See Colours and Shapes?
A researcher at Tel Aviv University says says that colors associated with various moods may just be more than a metaphor.

The researcher claims that humans might be able to 'see' colours and shapes with their skin.

Engineering professor Leonid Yaroslavsky hopes that his optic-less imaging model could lead to a new form of optical imaging technology that beats the limitations of today's lens-based imaging devices.

His model may also explain how this controversial primordial instinct, which is observable in some plants and animals, might have evolved over millions of years.

"Some people have claimed that they possess the ability to see with their skin," said Yaroslavsky.

Though biologists usually dismiss the possibility, there is probably a reasonable scientific explanation for 'skin vision.'

He believes that once understood, skin vision could lead to new therapies for helping the blind regain sight and even read.

Yaroslavsky has explained that skin vision in humans is likely a natural atavistic ability involving light-sensitive cells in our skin connected to neuro-machinery in the body and in the brain.

Yaroslavsky is motivated by science and the design of new smart imaging devices, in which optics are replaced by computers.

He is currently developing imaging simulation theories using computer software, theories which may lead to future devices with practical applications.

He said that such devices would have distinct advantages over conventional optics-based imaging.

Applications could include special sensors for detecting radiation at sea and in airports to detect terrorist threats, new night-vision devices, or near-weightless mechanisms to steer spaceships to stars beyond our own galaxy.

Traditional imaging lenses only work within a limited range of electromagnetic radiation. They are still very costly, limited by weight and field of view.

Yaroslavsky said that requiring no lenses, optics-less imaging devices could be adapted to any kind of radiation and any wavelength.

They could essentially work with a "bionic" 360-degree field of view and their imaging capability determined by computer power rather than the laws of light diffraction.

However, before real-world applications can be developed, Yaroslavsky hopes to convince biologists to take a leap of faith and delve deeper into the mechanisms of optics-less vision. He believes that their input could propel imaging research to the next level.

Yaroslavsky presents his theories on the subject in a chapter of a new book titled "Advances in Information Optics and Photonics."

Source: ANI

Most Popular on Medindia