Medindia LOGIN REGISTER
Medindia
Advertisement

Scientists Identify Why H1N1 Flu Spreads from Person to Person Less Effectively Than Other Flu Viruses

by Rajashri on July 4, 2009 at 9:28 PM
 Scientists Identify Why H1N1 Flu Spreads from Person to Person Less Effectively Than Other Flu Viruses

A genetic explanation for why the new H1N1 "swine flu" virus has spread from person to person less effectively than other flu viruses has been espoused by US scientists.

A collaborative team of researchers from the Massachusetts Institute of Technology (MIT) and the Centers for Disease Control and Prevention have found that the H1N1 strain, which circled the globe this spring, has a form of surface protein that binds inefficiently to receptors found in the human respiratory tract.

Advertisement

"While the virus is able to bind human receptors, it clearly appears to be restricted," says Ram Sasisekharan, the Edward Hood Taplin Professor and director of the Harvard-MIT Division of Health Sciences and Technology (HST) and the lead MIT author of the paper.

He points out that that restricted binding, along with a genetic variation in an H1N1 polymerase enzyme, which was first reported about three weeks ago in Nature Biotechnology, explains why the virus has not spread as efficiently as seasonal flu.
Advertisement

However, flu viruses are known to mutate rapidly, so there is cause for concern if H1N1 undergoes mutations that improve its binding affinity.

"We need to pay careful attention to the evolution of this virus," says Sasisekharan.

For their study, the researchers compared the new H1N1 strain to several seasonal flu strains, including some milder H1N1 strains, and to the virus that caused the 1918 flu pandemic.

They found that the new strain is able to bind to the predominant receptors in the human respiratory tract, known as umbrella-shaped alpha 2-6 glycan receptors.

However, binding efficiency varies between flu strains, and that variation is partly determined by the receptor-binding site (RBS) within the hemagglutinin protein.

The researchers found that the new H1N1 strain's RBS binds human receptors much less effectively than other flu viruses that infect humans.

They also observed that the new H1N1 strain spreads inefficiently in ferrets, which accurately mimics human influenza disease including how it spreads or transmits in humans.

When the ferrets were in close contact with each other, they were exposed to enough virus particles that infection spread easily. However, when they were kept separate and the virus could spread only through airborne respiratory droplets, the illness spread much less effectively.

Sasisekharan says that this is consistent with the transmission of this virus seen in humans so far, considering that most outbreaks have occurred in limited clusters, sometimes within a family or a school but not spread much further.

"One of the big payoffs of long-term investments in carbohydrate biology and chemistry research is an understanding of the relationships between cell surface carbohydrate structure and viral infectivity. Tools developed in building such understanding help in the response to events like the recent H1N1 outbreak," said Jeremy M. Berg, director of the National Institute of General Medical Sciences of the National Institutes of Health, which partly funded the research.

The researchers also pinpointed a second mutation that impairs H1N1's ability to spread rapidly.

While recent studies have shown that a viral RNA polymerase known as PB2 is critical for efficient influenza transmissibility, the new H1N1 strain does not have the version of the PB2 gene necessary for efficient transmission.

A research article describing the study has been published in the online edition of the journal Science.

Source: ANI
RAS
Font : A-A+

Advertisement

Advertisement
Advertisement

Latest Research News

South Korea's 2050 Forecast: Negative Growth Amid Low Fertility
South Korea's total fertility rate, averaging the number of children a woman aged 15-49 has in her lifetime, dropped to 0.81.
New Immunotherapy for Psoriasis & Vitiligo
Scientists identified mechanisms governing immune cells, selectively removing troublemakers to reshape skin immunity. Benefits those with psoriasis, vitiligo.
2050 Forecast: 1.06 Billion Individuals to Face 'Other' Musculoskeletal Disorders
By 2050, an anticipated increase from 494 million cases in 2020 to 1.06 billion people with musculoskeletal disabilities is expected.
Gene Therapies Can Disrupt Gaucher Disease Drug Market
Experts consulted by GlobalData anticipate a significant overhaul in the Gaucher disease scenario because of forthcoming gene therapies in development.
NASH Cases Expected to Hit 26.55 Million in 7MM by 2032
Within the seven major markets, 12% to 20% of diagnosed prevalent NASH cases present severe liver damage (stage 4 liver fibrosis), denoting cirrhosis.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Scientists Identify Why H1N1 Flu Spreads from Person to Person Less Effectively Than Other Flu Viruses Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests