About Careers MedBlog Contact us

Scientists Develop Groundbreaking Technique to Measure Oxygen in Deep-sited Tumor, Brain

by Vishnuprasad on February 12, 2015 at 5:38 PM
Font : A-A+

 Scientists Develop Groundbreaking Technique to Measure Oxygen in Deep-sited Tumor, Brain

A novel Electron Paramagnetic Resonance (EPR) oximetry technique will help clinicians directly measure oxygen and schedule treatments at times of high oxygen levels in cancer and stroke patients to improve outcomes, the EPR team at Dartmouth's Geisel School of Medicine has found.

The team, led by Harold Swartz, MD, PhD, published their groundbreaking progress on the decades-old conundrum of how to measure oxygenation in deep-sited tissue in a paper titled, 'Deep-Tissue Oxygen Monitoring in the Brain of Rabbits for Stroke Research,' published in Stroke.


Nadeem Khan, PhD, first author said, "This is a major step forward. It brings EPR oximetry technique to the forefront of biomedical research for clinical applications."

Oxygen is necessary to sustain life. A certain level of oxygen in a cell or tissue is necessary to maintain the generation of energy by cells. Oxygen also plays a key role in the development and treatment of various diseases.

The effectiveness of several therapies also depends on the oxygen levels in a malignancy. For example, a very low level of oxygen in cancer is known to develop aggressive phenotypes, varies with the growth of tumors, and also compromises the effectiveness of chemotherapy and radiation. Hence, it is very important to directly measure oxygen levels to understand disease progression, develop strategies to improve oxygen levels, and optimize the efficacy of therapies.

Oxygen measurement in deep-sited tissue has been a challenge for several techniques, which has unfortunately limited the understanding of various pathologies in large animals and humans. To solve the problem, Dartmouth's EPR team developed implantable resonators made of thin nonmagnetic copper wire to facilitate direct and repeated measurement of tissue oxygenation at any depth from the surface. In their most recent experiment, which demonstrated the efficacy of in vivo EPR oximetry, they used a one-time implementation of the oxygen probes in the brain of a rabbit and successfully monitored oxygen levels for several weeks.

"Other than the implantation, which is done under anesthesia, the rest of the procedure for oxygen measurements is entirely non-invasive. We anticipate that a better understanding of oxygen levels in stroke, for instance, will guide the development of strategies to significantly improve oxygen levels in the ischemic regions of the brain and thereby improve outcomes," explained Khan.

The investigators conclude that real-time monitoring of tissue oxygenation using implantable resonators will be a powerful tool in stroke and cancer research.

Source: Medindia


Recommended Reading

Latest Medical Gadgets

 Developing Wireless Patch System to Detect Sleep Apnea at Home
Recent progress in the development of wearable devices has presented alternative ways for sleep monitoring at home, which could be useful in sleep apnea detection.
Non-Invasive Brain Imaging: A Tool to Help Paralysis Patients
Researchers develop non-invasive brain imaging techniques to help people with disabilities.
 Apple Watch New Feature Helps US Women to Get Medical Help
Heart rate notifications and the ECG app on Apple Watch give patients and their clinicians' important information about their heart health.
New Machine Learning Tool to Detect Brain Tumor
The new machine learning tool prioritizes driver mutations in brain tumor (glioblastoma) and assists in identifying therapeutic targets.
Unlock the Power of Wearable Tool to Treat Hand Edema
KnitDema, the knitted robotic textile was found to show promising results for hand edema patients.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close

Scientists Develop Groundbreaking Technique to Measure Oxygen in Deep-sited Tumor, Brain Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests