Near-infrared light may help identify breast cancer patients who will benefit most from chemotherapy, revealed study.

‘Near-infrared (NIR) light helps identify breast cancer patients who will respond to chemotherapy.
’

The optical imaging system was developed in the laboratory of Andreas Hielscher, professor of biomedical engineering and electrical engineering at Columbia Engineering and professor of radiology at Columbia University Irving Medical Center. 




"There is currently no method that can predict treatment outcome of chemotherapy early on in treatment, so this is a major advance," says Hielscher, co-leader of the study, who is also a member of the Breast Cancer Program at the Herbert Irving Comprehensive Cancer Center at NewYork-Presbyterian/Columbia University Irving Medical Center. His dynamic optical tomographic breast imaging system generates 3D images of both breasts simultaneously. The images enable the researchers to look at blood flow in the breasts, see how the vasculature changes, and how the blood interacts with the tumor.
"This helps us distinguish malignant from healthy tissue and tells us how the tumor is responding to chemotherapy earlier than other imaging techniques can."
Neoadjuvant chemotherapy, given for five to six months before surgery, is the standard treatment for some women with newly diagnosed invasive, but operable, breast cancer. The aim of neoadjuvant chemotherapy is to eliminate active cancer cells--producing a complete response--before surgery. Those who achieve a complete response have a lower risk of cancer recurrence than those who do not. However, fewer than half of women treated with neoadjuvant chemotherapy achieve a complete response.
"Patients who respond to neoadjuvant chemotherapy have better outcomes than those who do not, so determining early in treatment who is going to be more likely to have a complete response is important," says Dawn Hershman, MD, leader of the Breast Cancer Program at the Herbert Irving Comprehensive Cancer Center at NewYork-Presbyterian/Columbia and co-leader of the study. "If we know early that a patient is not going to respond to the treatment they are getting, it may be possible to change treatment and avoid side effects."
Advertisements
The researchers analyzed imaging data from 34 patients with invasive breast cancer between June 2011 and March 2016. The patients comfortably positioned their breasts in the optical system, where, unlike mammograms, there was no compression.
Advertisements
"If we can confirm these results in the larger study that we are planning to begin soon, this imaging system may allow us to personalize breast cancer treatment and offer the treatment that is most likely to benefit individual patients," says Hershman, who is also a professor of medicine and epidemiology at Columbia University Irving Medical Center.
Researchers are also studying other imaging technologies for breast cancer treatment monitoring, such as MRI, X-ray imaging, and ultrasound, but Hielscher notes that these have not yet shown as much promise as this new technology.
"X-ray imaging uses damaging radiation and so is not well-suited for treatment monitoring, which requires imaging sessions every two to three weeks," he says. "MRIs are expensive and take a long time, from 30-90 minutes, to perform. Because our system takes images in less than 10 minutes and uses harmless light, it can be performed more frequently than MRI."
Hielscher and Hershman are currently refining and optimizing the imaging system and planning a larger, multicenter clinical trial. They hope to commercialize their technology in the next three to five years.
Source-Eurekalert