About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Role of Anti-inflammatory Drug in Boosting Cardiac Reprogramming

by Ramya Rachamanti on March 7, 2019 at 4:08 PM
Font : A-A+

Role of Anti-inflammatory Drug in Boosting Cardiac Reprogramming

Once damaged, the human heart does a poor job of repairing itself, so this is an essential factor in treating heart failure. Reprogramming non-cardiac body cells like fibroblasts into heart muscle cells (cardiomyocytes) using a collection of cardiac transcription factors could restore cardiac function.

This bypasses the need to use stem cells as an intermediate and avoids stimulating the proliferation of existing cardiomyocytes. However, the reprogramming of postnatal and adult fibroblasts is inefficient compared with that of embryonic fibroblasts, and the challenges associated with reprogramming aged cells are unclear.

Advertisement


A new study in Nature Communications has advanced this field by using a high-throughput screening approach to identify diclofenac, an FDA-approved drug commonly used to treat inflammation and rheumatic diseases, as a factor promoting cardiac reprogramming in postnatal and adult fibroblasts but not embryonic ones.

The finding by researchers at the University of Tsukuba and their research colleagues in a Japan-wide university collaboration also helps define the barriers unique to cellular aging.
Advertisement

Previous methods of identifying cardiac reprogramming factors have been labor intensive and unsuitable for large-scale screening. "As an alternative approach, we developed a high-content technique to screen a chemical library of 8400 compounds," says co-author Taketaro Sadahiro. "The first round of screening identified 37 potential compounds, which were narrowed down to four in the second round. The most powerful of these four molecules was diclofenac." Based on these findings, diclofenac was shown to improve cardiac reprogramming in a dose-dependent manner largely by inhibiting the enzyme COX-2, which is highly expressed in postnatal and adult fibroblasts. Diclofenac also suppressed a host of signaling molecules, including several mediators of inflammation.

The team found that diclofenac functioned during the early stages of cardiac reprogramming, and increased the generation of cardiomyocytes more quickly and efficiently than TGF? and Wnt inhibitors, which are factors known to promote reprogramming.

"Consistent with the importance of inflammation in preventing cardiac reprogramming, our microarray data showed that diclofenac downregulated fibroblast and inflammatory genes, and upregulated cardiac genes," says corresponding author Masaki Ieda. "Thus, diclofenac was responsible for silencing fibroblast signatures, which occurred prior to cellular reprogramming into cardiomyocytes."

As well as COX-2, genes associated with inflammation and fibroblasts were also shown to be more highly expressed in postnatal and adult cells compared with embryonic fibroblasts. This indicated that inflammation and fibrogenesis are age-related barriers to cardiac reprogramming. These findings have important implications for the development of new therapies for cardiac regeneration in pediatric and adult patients.



Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Drug News

 Parkinson's Unmet Needs Creates Path for New Entrants into the Market
Addressing the unmet needs of Parkinson's Disease by providing disease-modifying therapies could bring about a major shift in the way that patients are treated.
How Microrobots Could Help Treat Bladder Diseases?
Microrobots could swirl through a person's blood stream, search for targeted areas to treat for various ailments.
How Can Multivitamin Supplements Slow Cognitive Aging?
Supplementation with multivitamins is an inexpensive way for older adults to slow down memory loss.
 Ivosidenib Approved for Acute Myeloid Leukemia & Advanced Cholangiocarcinoma
Some people with an aggressive blood cancer called acute myeloid leukemia (AML) may soon have a new drug option called Ivosidenib that blocks the activity of IDH1 gene.
Sacubitril/valsartan Unleashes Hope for Heart Failure Patients
In case of cardiac failure where the ejection fraction is greater than 40%, sacubitril/valsartan can prove to be quite beneficial
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Role of Anti-inflammatory Drug in Boosting Cardiac Reprogramming Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests