Robots Now Equipped With Skill to Jump

by Kathy Jones on Feb 17 2013 2:24 PM

 Robots Now Equipped With Skill to Jump
Researchers at Harvard have designed a soft robot that can leap as much as a foot in the air. They have used small explosions produced by a mix of methane and oxygen in this endeavor.
That ability to jump could one day prove critical in allowing the robots to avoid obstacles during search and rescue operations.

"Initially, our soft robot systems used pneumatic pressure to actuate. While that system worked, it was rather slow - it took on the order of a second. Using combustion, however, allows us to actuate the robots very fast. We were able to measure the speed of the robot's jump at 4 meters per second," said Robert Shepherd, first author of the paper, former postdoctoral researcher in the Whitesides Research Group at Harvard, and now an assistant professor at Cornell.

Just as with other soft robots, the three-legged jumping system begins life as a mold created by a 3-D printer. The robots are molded using soft silicone that allows them to stretch and flex.

But where pneumatic robots are connected to tubing that pumps air, the jumping robots are connected to tubes that deliver a precisely controlled mix of methane and oxygen. Using high-voltage wires embedded in each leg of the robot, researchers deliver a spark to ignite the gases, causing a small explosion that sends the robot into the air.

Among the key design innovations that allowed the combustion system to work, Shepherd said, was the incorporation of a simple valve into each leg of the robot.

"We flow fuel and oxygen into the channels, and ignite it. The heat expands the gas, causing the flap to close, pressurizing the channel and causing it to actuate. As the gas cools, the flap opens and we push the exhaust out by flowing more gas in. So we don't need to use complex valve systems, all because we chose to mold a soft flap into the robot from the beginning," Shepherd explained.

While he hopes to see internal combustion systems developed that can allow robots to walk or even run, Shepherd said jumping made sense as a starting point.

The research was described in a recent paper in the international edition of Angewandte Chemie.