About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Researchers Identify Potent Experimental Drug to Fight Treatment-resistant Leukemias

by Thilaka Ravi on April 9, 2014 at 7:24 PM
Font : A-A+

Researchers Identify Potent Experimental Drug to Fight Treatment-resistant Leukemias

An experimental compound dubbed TTT-3002 has the potential to become the most potent drug available to block genetic mutations in cancer cells blamed for some forms of treatment-resistant leukemia, observe researchers working in mice and human cell lines.

Results of the research by Johns Hopkins Kimmel Cancer Center investigators, described March 6 in the journal Blood, show that two doses a day of TTT-3002 eliminated leukemia cells in a group of mice within 10 days. The treatment performed as well as or better than similar drugs in head-to-head comparisons.

Advertisement

More than 35 percent of acute myeloid leukemia (AML) patients harbor a mutation in the gene FMS-like tyrosine kinase-3 (FLT3). Normal FLT3 genes produce an enzyme that signals bone marrow stem cells to divide and replenish. But when FLT3 is mutated in some AML patients, the enzyme stays on permanently, causing rapid growth of leukemia cells and making the condition likely to relapse after treatment.

Many investigators are developing and testing drugs designed to block the FLT3 enzyme's proliferation, several of which are now in clinical trials. So far, their effectiveness has been limited, according to Donald Small, M.D., Ph.D., the Kyle Haydock Professor of Oncology and director of pediatric oncology at Johns Hopkins. Small led a team of researchers who originally cloned the FLT3 gene and linked it to leukemia a decade ago.
Advertisement

"We're very excited about TTT-3002, because it appears in our tests so far to be the most potent FLT3 inhibitor to date," says Small. "It showed activity against FLT3-mutated cells taken from patients and with minimal toxicity to normal bone marrow cells, making it a promising new candidate for the treatment of AML."

In a series of experiments with the drug, Small, postdoctoral fellow Hayley Ma, Ph.D., and others found that the amount of TTT-3002 needed to block FLT3 activity in human leukemia cell lines was six- to sevenfold lower than for the most potent inhibitor currently in clinical trials. TTT-3002 also inhibited proteins made by genes further down the FLT3 signaling pathway, including STAT5, AKT and MAPK, and showed activity against the most frequently occurring FLT3 mutations, FLT3/ITD and FLT3/D835Y. Many cancer drugs are currently ineffective against FLT3/D835Y mutations.

When the Johns Hopkins team tested the drug in a mouse model of leukemia, they found that it not only eliminated the presence of leukemic cells within 10 days of treatment but also that the mice lived an average of more than 100 days following treatment, to study completion, and resumed normal bone marrow activity. By contrast, mice treated with a placebo died an average of 18 days following treatment.

Additional studies found that TTT-3002 performed as well as sorafenib, another FLT3 inhibitor, in treating leukemic mice, and that the drug was toxic to leukemia cell samples taken from newly diagnosed and relapsed patients with AML but did not affect normal bone marrow cells taken from healthy donors.

A single dose of the medication caused more than 90 percent inhibition against FLT3 signaling that lasted for 12 hours, Small says.



Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Drug News

AstraZeneca's Liver Cancer Drug Approved by CDSCO in India
The CDSCO has approved the intravenous administration of AstraZeneca Pharma India's liver cancer drug, Tremelimumab Concentrate.
 FDA Issues Warning About Compounded Diabetes Drug Semaglutide Products
The FDA advises consumers not to use compounded medications as an alternative to known diabetic and weight reduction medications Ozempic, Rybelsus, and Wegovy.
 Parkinson's Unmet Needs Creates Path for New Entrants into the Market
Addressing the unmet needs of Parkinson's Disease by providing disease-modifying therapies could bring about a major shift in the way that patients are treated.
How Microrobots Could Help Treat Bladder Diseases?
Microrobots could swirl through a person's blood stream, search for targeted areas to treat for various ailments.
How Can Multivitamin Supplements Slow Cognitive Aging?
Supplementation with multivitamins is an inexpensive way for older adults to slow down memory loss.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Researchers Identify Potent Experimental Drug to Fight Treatment-resistant Leukemias Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests