About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Researchers Identify New Approach for an Effective HIV Vaccine

by Kathy Jones on March 25, 2013 at 6:42 PM
Font : A-A+

 Researchers Identify New Approach for an Effective HIV Vaccine

American researchers have come up with a new approach to vaccine design that could help them overcome the difficulties faced in developing an effective HIV vaccine due to the rapidly changing structure of the HIV virus.

Now, a researcher team led by an Indian origin scientist has developed a new approach to vaccine design that may allow them to cut off those evolutionary escape routes.

Advertisement

The researchers from the Ragon Institute of MGH, MIT and Harvard University have developed and experimentally validated a computational method that can analyze viral protein sequences to determine how well different viral strains can reproduce in the body. That knowledge gives researchers an unprecedented guide for identifying viral vulnerabilities that could be exploited to design successful vaccine targets.

The team, led by Arup Chakraborty, the Robert T. Haslam Professor of Chemical Engineering, Chemistry, Physics and Biological Engineering at MIT, has designed protein fragments (peptides) that would target these weaknesses.
Advertisement

Ragon Institute researchers are now developing ways to deliver the peptides so they can be tested in animals.

"We think that, if it continues to be validated against laboratory and clinical data, this method could be quite useful for rational design of the active component of a vaccine for diverse viruses. Furthermore, if delivered properly, the peptides we have designed may be able to mount potent responses against HIV across a population," said Chakraborty, who is also the director of MIT's Institute for Medical Engineering and Science.

Typically when a vaccine for a disease such as smallpox or polio is given, exposure to viral fragments primes the body's immune system to respond powerfully if it encounters the real virus. With HIV, it appears that when immune cells in a vaccinated person attack viral peptides that they recognize, the virus quickly mutates its protein sequences so immune cells no longer recognize them.

To overcome this, scientists have tried analyzing viral proteins to find amino acids that don't often mutate, which would suggest that they are critical to the virus's survival. However, this approach ignores the fact that mutations elsewhere in the protein can compensate when those seemingly critical amino acids are forced to evolve, Chakraborty said.

The Ragon Institute team focused on defining how the virus's ability to survive depends on the sequences of its proteins, if they have multiple mutations. This knowledge could enable identification of combinations of amino acid mutations that are harmful to the virus. Vaccines that target those amino acids would force the virus to make mutations that weaken it.

With existing HIV protein sequence data as input, the researchers created a computer model that can predict the fitness of any possible sequence, enabling prediction of how specific mutations would affect the virus.

In their study, the researchers focused on an HIV polyprotein called Gag, which is made up of several proteins that together are 500 amino acids long. The proteins derived from Gag are important structural elements of the virus. For example, a protein called p24 makes up the capsid that surrounds the virus's genetic material.

Each position in HIV proteins can be occupied by one of 20 possible amino acids. Sequence data from thousands of different HIV strains contain information on the likelihood of mutations at each position and each pair of positions, as well as for triplets and larger groups. The researchers then developed a computer model based on spin glass models, originally developed in physics, to translate this information into predictions for the prevalence of any mutant.

Using this model, the researchers can enter any possible sequence of Gag proteins and determine how prevalent it will be. That prevalence correlates with the fitness of a virus carrying that particular protein sequence, a relationship that the researchers demonstrated by using the model to predict the fitness of a few dozen Gag protein sequences, and verified by engineering those sequences into HIV viruses and testing their ability to replicate in cells grown in the lab. They also tested their predictions against human clinical data.

The model also allows the researchers to visualize viral fitness using "fitness landscapes" - topographical maps that show how fit the virus is for different possible amino-acid sequences for the Gag proteins. In these landscapes, each hill represents sequences that are very fit; valleys represent sequences that are not.

Ideally, vaccine-induced immune responses would target viral proteins in such a way that mutant strains that escape the immune response correspond to the fitness valleys. Thus, the virus would either be destroyed by the immune response or forced to mutate to strains that cannot replicate well and are less able to infect more cells.

This would mimic the immune response mounted by people known as "elite controllers," who are exposed to the virus but able to control it without medication. Immune cells in those people target the same peptide sequences that the model predicted would produce the biggest loss of fitness when mutated.

This general approach could also be used to identify vaccine targets for other viruses, Chakraborty added.

The researchers have described their findings in latest issue of the journal Immunity.

Source: ANI
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Turmeric: Magic Ingredient to Keep you Healthy in Winter
Top 7 Benefits of Good Oral Hygiene
Healthy and Safer Thanksgiving 2021
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Oral Health And AIDS AIDS/HIV AIDS/HIV - Epidemiology AIDS/HIV - Clinical Features AIDS/HIV - Health Education AIDS/HIV - Prevention And Transmission AIDS / HIV - Treatment AIDS/HIV- Lab Tests and Faqs Prostitution: Fresh Stakes in the Oldest Trade HIV Symptom 

Recommended Reading
AIDS/HIV - Lab Tests and FAQs
Describes how screening for HIV is performed in a laboratory....
AIDS/HIV - Clinical Features
Encyclopedia section of medindia gives general info about HIV Clinical Features...
AIDS/HIV - Prevention And Transmission
Encyclopedia section of medindia explains in brief about the prevention for AIDS/HIV...
AIDS / HIV - Treatment
Encyclopedia section of medindia explains in brief about the treatment for AIDS/HIV...
AIDS/HIV
"AIDS is an epidemic disease, a potentially preventable, deadly infection for which there is no cure...
AIDS/HIV - Epidemiology
AIDS or HIV is an epidemic disease, a potentially deadly infection that can be prevented with preca...
AIDS/HIV - Health Education
Encyclopedia section of medindia gives general info about AIDS information and health education....
Oral Health And AIDS
AIDS has taken on massive proportions in modern times. It is estimated that over 15 million people a...
Prostitution: Fresh Stakes in the Oldest Trade
Prostitution has broadened its base to include street prostitution, massage brothels, gigolo outcall...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use