About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Researchers Find Way to Decrease Chemoresistance in Ovarian Cancer

by Kathy Jones on May 3, 2014 at 11:11 PM
Font : A-A+

 Researchers Find Way to Decrease Chemoresistance in Ovarian Cancer

Researchers at Georgia State University and the University of Georgia have found that chemotherapy resistance in ovarian cancer patients can be reduced by suppressing enzymes that lead to changes in gene expression.

Dr. Susanna Greer, associate professor of biology, and research partners at the University of Georgia have identified two enzymes that suppress proteins that are important for regulating cell survival and chemoresistance in ovarian cancer. Their findings are published in the journal, PLOS ONE.

Advertisement

Ovarian cancer is one of the deadliest gynecological cancers, with a 60 percent mortality rate and a five-year survival rate for less than 30 percent of women in the advanced stage of the disease. The high mortality rate is largely due to the development of resistance to chemotherapeutic drugs. Understanding the molecular and genetic mechanisms that drive the development of acquired chemoresistance can help improve therapeutic agents for ovarian cancer treatment.

"Ovarian cancer is usually treated by surgery followed by chemotherapy," Greer said, "but because it's typically found fairly late, ovarian cancer is often refractory to chemotherapy. You have tumors that initially respond to chemotherapy and then don't. Ovarian cancer is the 8th most commonly diagnosed cancer in U.S. women, but due to its late diagnosis, causes more deaths than any other cancer of the female reproductive system."
Advertisement

In a previous study, Greer found the expression of the protein RGS10, which regulates ovarian cancer cell growth and survival, is suppressed in ovarian cancer cells that are chemoresistant. The suppression was caused by two important mechanisms that silence genes and contribute to the progression of many cancers - DNA methylation, a biochemical process in which a methyl group is added to specific building blocks of DNA, and histone deacetylation, a process in which enzymes remove functional groups of atoms from proteins associated with DNA.

In their study, the researchers investigate the silencing of RGS10 expression in ovarian cancer cells by epigenetics, which is heritable changes in genes and gene expression that are not caused by changes in the DNA sequence, but rather by reversible and self-perpetuating mechanisms of DNA programming.

They identified two epigenetic regulators, HDAC1, a histone deacetylase, and DNMT1, a DNA methyl transferase. Decreasing the expression of HDAC1 and DNMT1 and blocking their activity significantly increased RGS10 expression and cell death. This also decreased the binding of HDAC1 to RGS10 in chemoresistant cells.

The research suggests that inhibiting HDAC1 and DNMT1 could be a novel therapeutic approach to overcoming chemoresistance in ovarian cancer.



Source: Eurekalert
Advertisement
Advertisement
Advertisement

Recommended Reading

This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Researchers Find Way to Decrease Chemoresistance in Ovarian Cancer Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests