About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Researchers Develop New Antibiotic That Kills Even Drug-Resistant MRSA

by Kathy Jones on April 12, 2013 at 6:59 PM
Font : A-A+

 Researchers Develop New Antibiotic That Kills Even Drug-Resistant MRSA

Researchers at The Rockefeller University in collaboration with Astex Pharmaceuticals have developed a new broad range antibiotic that is effective in killing a wide range of bacteria, including the drug resistant Staphylococcus which are not responsive to currently available drugs.

The antibiotic, Epimerox, targets weaknesses in bacteria that have long been exploited by viruses that attack them, known as phage, and has even been shown to protect animals from fatal infection by Bacillus anthracis, the bacteria that causes anthrax.

Advertisement

Target selection is critical for the development of new antimicrobial agents. To date, most approaches for target selection have focused on the importance of bacterial survival. However, in addition to survival, the Rockefeller scientists believe that molecular targets should be identified by determining which cellular pathways have a low probability for developing resistance.

"For a billion years, phages repeatedly have infected populations of bacteria, and during this period of time they have identified weaknesses in the bacterial armor," says senior author Vincent A. Fischetti, professor and head of the Laboratory of Bacterial Pathogenesis and Immunology. "We're taking advantage of what phage have 'learned' during this period for us to identify new antibiotic targets that we believe will escape the problem of resistance found for other antibiotics."
Advertisement

The path to identification of this new target spanned more than seven years of effort. Fischetti and his colleagues used a phage-encoded molecule to identify a bacterial target enzyme called 2-epimerase, which is used by Bacillus anthracis to synthesize an essential cell wall structure. In 2008, Fischetti's lab, with Rockefeller's Erec Stebbins and his colleagues in the Laboratory of Structural Microbiology, solved the crystal structure of this enzyme. Based on this work, the researchers identified a previously unknown regulatory mechanism in 2-epimerase that involves direct interaction between one substrate molecule in the enzyme's active site and another in the enzyme's allosteric site. Fischetti and his colleagues chose to target the allosteric site of 2-epimerase to develop inhibitory compounds, because it is found in other bacterial 2-epimerases but not in the human equivalent of the enzyme.

Through the collaboration with Astex, an inhibitor of 2-epimerase named Epimerox was developed. Raymond Schuch, a former postdoctoral researcher in Fischetti's lab, tested the inhibitor in mice infected with Bacillus anthracis. He found that not only did Epimerox protect the animals from anthrax, but the bacteria did not develop resistance to the inhibitor. The researchers also found that Epimerox was able to kill methicillin-resistant Staphylococcus aureus (or MRSA) with no evidence of resistance even after extensive testing. Their work was published this week in PLOS One.

"Since nearly all Gram-positive bacteria contain 2-epimerase, we believe that Epimerox should be an effective broad-range antibiotic agent," says Fischetti. "The long-term evolutionary interaction between phage and bacteria has allowed us to identify targets that bacteria cannot easily change or circumvent. That finding gives us confidence that the probability for developing resistance to Epimerox is rather low, thereby enabling treatment of infections caused by multi-drug-resistant bacteria such as MRSA. It is a very encouraging result at a time when antibiotic resistance is a major health concern."



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Top 7 Benefits of Good Oral Hygiene
Healthy and Safer Thanksgiving 2021
Long-Term Glycemic Control - A Better Measure of COVID-19 Severity
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
MRSA - The Super Bug Drug Resistance - Antibiotic Resistance Antibiotics 

Recommended Reading
Drug Resistance - Antibiotic Resistance
Drug resistance is often a problem in malaria, tuberculosis, HIV, sexually transmitted diseases and ...
MRSA - The Super Bug
MRSA infection is the most dreaded hospital or community acquired infection that can become ......
Antibiotics
Antibiotics are among the most used and abused medications. This article explains some general featu...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use