About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Research using Mechanics and Physics Shows how Cellular Behaviors Predict Diseases

by Mary Selvaraj on August 20, 2019 at 10:50 AM
Font : A-A+

Research using Mechanics and Physics Shows how Cellular Behaviors Predict Diseases

The mechanical and physical behavior of cells that react to local stress by undergoing allostatic changes exhibit patterns that could lead to the diagnosis and treatment of conditions like diabetes, hypertension, and aneurysm.

Researchers at the NYU Tandon School of Engineering have discovered a new way to identify the state of individual cells by bringing principles of mechanical engineering and physics to bear on processes that are now well understood at the macro level, but not yet at the cellular level: how stressors such as injury and disease force an organism into a new level of equilibrium -- a biological process of finding a "new normal" called allostasis. The researchers' findings carry major implications for the diagnosis and staging of chronic diseases like hypertension and diabetes.

Advertisement


The team, led by Weiqiang Chen, assistant professor of mechanical and aerospace engineering and of biomedical engineering, and Vittoria Flamini, industry assistant professor of mechanical and aerospace engineering, used live cell imaging and a novel micro-mechanical tool to apply a transient, local physical stress on cells while simultaneously measuring dynamic allostatic responses and the tension of the cells' cytoskeleton (CSK) and other cellular structures, cellular energies.

The study, "Energy-Mediated Machinery Drives Cellular Mechanical Allostasis," which will be featured in Advanced Materials, details how the team measured mechanical stress and energies of cells and compared the stress patterns to those of cells in patients with chronic conditions like type II diabetes, allowing them to build predictive models for diabetes and other conditions.
Advertisement

To study how the cells "remodeled" themselves through mechanical and energy-related processes in response to external stimuli, the team employed a "tweezer" developed by Chen that uses ultrasound pulses and "microbubbles" that attach to the cell membrane and -- as the pulses perturb the bubbles -- exert mechanical forces on the cells. The team embedded the vascular-muscle test cells in a substrate comprising elastic polydimethylsiloxane (PDMS) micropillars. This setup allowed them to quantify cellular force and energy during the operation by measuring deflections of the micropillar substrate; fluorescent microscopy allowed the team to visually monitor how stress reorganized the CSK, especially its constituents actin and myosin that, like metal fibers in a steel-belted radial tire, can become dysfunctional and deformed under force.

Using experimental results, the team built a new biophysical model of energy-driven cellular machinery for understanding allostasis in cells. In this process, cellular energy not only provides the driving power for adaption but also a negative feedback to help in restabilizing the cell's system.

"A skewed energy pattern and cell maladaptation may indicate a transformation of healthy condition into a pathological contexts, such as diabetes, hypertension, or aging," said Chen.

The researchers tested their model on four presentations of CSK tension, actin and myosin, and net energy, before, during and after the introduction into cells of chemical agents that generate specific dysfunctional cellular patterns that are phenotypes for disease: For example, disruption in such cell CSK structures as actin fibers can result in a weak adaptative process which may reveal pathological condition like diabetes, while over-activity in actin polymerization in cells may cause "prolonged excitation" or "hypo-reactivity" without an "off" time after a perturbation in conditions like hypertension.

"Energy balance is a proxy for health," said Flamini. "Energy and physics are involved in cellular behaviors; proof of concept is how the energy pattern looks for different conditions. We have shown we can predict that."

"The ability to achieve stability through change is a critical biological adaptation allowing living organisms to stabilize internal and external environment changes," she explained. "However, it remains unclear how it happens in a single cell. Our research addressed this question for a single cell system in which energy plays a key role in the process."

Added Weiqiang, "In collaboration with colleagues at NYU Langone Health, the team is focusing on cardiovascular diseases because they are directly related to mechanical behaviors of vascular cells. In an aneurysm, for example, inflammation affects proteins that regulate the elasticity of vascular cells. We are now looking at mechanical force in development of diseases like this."

A forthcoming paper will look at the potential of this research to expedite disease diagnosis and disease staging in aneurysm.

Source: Eurekalert
Advertisement

Advertisement
Advertisement

Latest Research News

What Are the Effects of Smoking on Quality of Life?
Tobacco smoke contains toxic chemicals which damage lungs, weaken the immune system and cause tuberculosis.
 Brain Shape Controls Our Thoughts, Feelings, and Behaviour
Identifying an unappreciated relationship between brain shape and activity overturns the century-old paradigm emphasizing the importance of complex brain connectivity.
Eight Threats to Black Adult's Longevity
Decoding the eight factors affecting Black adults' life expectancy.
Beyond the Campus: Contrasting Realities Revealed!
Sobering truth about foot travel in the United States emerges from international statistics, highlighting the prevalence of walking on the Blacksburg campus.
Astounding Link Between Darwin's Theory and Synaptic Plasticity  Discovered!
Unveiling a hidden mechanism, proteins within brain cells exhibit newfound abilities at synapses, reinforcing Darwin's theory of adaptation and diversity in the natural world.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Research using Mechanics and Physics Shows how Cellular Behaviors Predict Diseases Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests