About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Research to Promote Adult Heart Cells Regeneration

by Mohamed Fathima S on February 16, 2019 at 6:32 PM
Research to Promote Adult Heart Cells Regeneration

Heart muscle cells or cardiomyocytes do not proliferate to replace dead tissue with new, pumping cells, consequently leading to heart failure in people with severe heart attacks or injury to the heart. In a recent study, scientists were able to remove the 'blocks' that prevent cardiomyocytes proliferation. Adult cardiomyocytes are reprogrammed to a more fetal cell state by the researchers which open up new possibilities to treat heart disease.

"Cardiomyocytes are very long-lived cells that are highly specialized to maintain a functional, pumping heart," said corresponding author Dr. James Martin, professor of molecular physiology and biophysics and Vivian L. Smith Chair in Regenerative Medicine at Baylor College of Medicine. "However, they are so 'dedicated' to their job that they do not participate in other cellular activities, such as proliferation."

Advertisement


Cell proliferation is essential for tissue regeneration, so Martin and his colleagues have been investigating how to manipulate the genetic mechanisms that prevent cardiomyocyte proliferation in order to promote the repair of injured hearts.

The researchers had previously shown that the Hippo pathway stops cardiomyocyte proliferation by inhibiting the activity of the YAP pathway. In this study, the researchers developed a mouse model expressing in adult cardiomyocytes a version of YAP called YAP5SA that is impervious to the inhibitory influence of Hippo.
Advertisement

"We showed that by expressing YAP5SA, we could reprogram these highly specialized adult cardiomyocytes to look more like embryonic cells. The reprogrammed cells also can proliferate and the new cells make connections with pre-existing cardiomyocytes," said Martin, who also is director of the Cardiomyocyte Renewal Lab at the Texas Heart Institute.

Reprogramming of adult cardiomyocytes had not been done in live animals before, explains Martin.

"This study shows that it is possible to push those very specialized cells back to a more fetal state by manipulating the right genes," Martin said. "And this opens possibilities for treating heart disease by reprogramming cardiomyocytes."



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

Brain Circuits That Shape Bedtime Rituals in Mice
New study sheds light on the intrinsic, yet often overlooked, role of sleep preparation as a hardwired survival strategy.
NELL-1 Protein Aids to Reduce Bone Loss in Astronauts
Microgravity-induced bone loss in space, can be reduced by systemic delivery of NELL-1, a protein required for bone growth and its maintenance.
Connecting Genetic Variants to the Alzheimer's Puzzle
Researchers establish connections between Alzheimer's-linked genetic alterations and the functioning of brain cells.
Gene Therapy Sparks Spinal Cord Regeneration
Team at NeuroRestore introduces a groundbreaking gene therapy that has effectively promoted nerve regrowth and reconnection, post spinal cord injury.
Unlocking the Gut Microbiome's Influence on Bone Density
Scientists aim to pinpoint particular functional pathways affected by these bacteria that may have an impact on skeletal health.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Research to Promote Adult Heart Cells Regeneration Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests