A way to watch newly forming AIDS virus particles emerging or budding from infected human cells without interfering with the process has been devised.

"We watch one cell at a time" and use a digital camera and special microscope to make movies and photos of the budding process, says virologist Saveez Saffarian, an assistant professor of physics and astronomy and senior author of a new study of HIV budding published online today in the Public Library of Science journal PLOS ONE.
"We saw ALIX recruited into HIV budding for the first time," he says. "Everybody knew ALIX is involved in HIV budding, but nobody could visualize the recruitment of ALIX into the process."
The finding is "fundamental basic science" and has no immediate clinical significance for AIDS patients because ALIX is involved in too many critical functions like cell division to be a likely target for new medications, Saffarian says.
"We know a lot about the proteins that help HIV get out of the cell, but we do not know how they come together to help the virus get out, and it will be in the next 10 to 20 years that we will know a lot more of about this mechanism," he adds. "Would this be a drug target? Would this be a part of biochemistry used in a therapeutic or biotech industry later on? I can't tell you now. But if it was not because of our curiosity as a species, we would not have the technology we have today."
The new study "is nice work," says HIV budding expert Wes Sundquist, who advised Saffarian and is professor and co-chair of biochemistry at the University of Utah School of Medicine. "It's of genuine interest for those of us who study the mechanism of HIV assembly."
Advertisement
Advertisement