About Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Research Helps to Choose the Right Anticancer Drug

by Ramya Rachamanti on June 5, 2019 at 5:43 PM
Font : A-A+

Research Helps to Choose the Right Anticancer Drug

SRC kinase enzymes chemically modify a tumor-suppressing protein called SOCS1, according to a study done by the team of biochemists at Université de Montreal, published in the journal Cancer Research which opens the gate for using precision medicine for cancer, that is, choosing right drug for right patient.

"SOCS1 is part of a gene-regulation circuit centered around the master cell proliferation regulator p53, often called the guardian of the genome," said senior author Gerardo Ferbeyre, an UdeM biochemistry professor and researcher at its hospital research centre, the CRCHUM.

Advertisement


"If p53 or another protein in its network is mutated or becomes chemically modified in some abnormal way, a pattern of gene activation occurs that programs cells to proliferate without control, as occurs in cancers."

In their research - led by UdeM PhD student Emmanuelle Saint-Germain, with UdeM biochemist Frédéric Lessard and Université de Sherbrooke biochemist Subburaj Ilangumaran - Ferbeyre's team uncovered a new mechanism by which the p53 circuit becomes unbalanced.
Advertisement

Normally, the SRC kinases add phosphates to proteins in a cell in a highly regulated manner. But in cancer cells the regulation of these enzymes can break down. As a consequence, SOCS1 is abnormally targeted by these enzymes, leading to an effective inhibition of its ability to regulate p53 and stop the proliferation of cancer cells.

The therapeutic implications of UdeM's cientists discovery could be multiple, they believe.

Since effective anticancer drugs that target SRC kinases already exist, detection of modified SOCS1 in a tumour could be used to predict whether these drugs would be an effective treatment for the tumour.

"We were able to detect phosphorylated SOCS1 in patients' samples with an antibody that we developed," said Saint-Germain. "The same antibody could be used to detect phosphorylated SOCS1 in a clinical setting, providing a way to decide whether SRC kinase inhibitors would be an effective treatment."

Added Ilangumaran, who has been studying SOCS1 in immune cells and cancers for many years: "This new mechanism for SOCS1 inactivation may actually represent a regulatory control that is hijacked by cancer cells. On a more fundamental level, our group's discovery - that phosphorylation of SOCS1 acquires a new physical form - opens the door to hitherto unknown ways of regulating SOCS1 functions.

"And this has implications for the treatment of autoimmune diseases and for anticancer immunity."



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
Black Water: Benefits and Uses
World Hypertension Day 2022 - Measure Blood Pressure Accurately, Control It, Live Longer!
Drinking This Popular Beverage May Drop Dementia Risk
View all
Recommended Reading
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Drug Toxicity Signature Drug Toxicity Drugs Banned in India Neutropenic Sepsis 

Most Popular on Medindia

Hearing Loss Calculator Vent Forte (Theophylline) The Essence of Yoga Pregnancy Confirmation Calculator Calculate Ideal Weight for Infants Find a Hospital A-Z Drug Brands in India Sanatogen Blood Donation - Recipients Color Blindness Calculator

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use