About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Recovery from Spinal Cord Injury - Trigger Mechanism Revealed

by Vani Pradeep on December 20, 2014 at 12:21 PM
Font : A-A+

Recovery from Spinal Cord Injury - Trigger Mechanism Revealed

Recent research reveals that the human body can partially recover the basic motor functions after an incomplete injury of the spinal cord. So-called muscle spindles and associated sensory circuits back to the spinal cord promote the establishment of novel neuronal connections after injury. This circuit-level mechanism behind the process of motor recovery was elucidated by Prof. Silvia Arber's research group at the Biozentrum, University of Basel and the Friedrich Miescher Institute for Biomedical Research. Their findings may contribute to designing novel strategies for treatment after spinal cord injuries and have now been published in the journal Cell.

Spinal cord injuries often lead to chronically impaired motor function. However, patients with incomplete spinal cord injury can partially regain their basic motor ability under certain circumstances. It is believed that remaining uninjured spinal cord tissue provides a substrate to form new circuits bridging the injury. How this formation of new connections is triggered and promoted has remained unclear until now.

Advertisement

In collaboration with Prof. Grégoire Courtine's research group at the EPFL in Lausanne, the team of Prof. Silvia Arber at the Biozentrum at the University of Basel and the Friedrich Miescher Institute for Biomedical Research (FMI) has demonstrated in a mouse model why paralyzed limbs can move again after incomplete spinal cord injuries: A specific sensory feedback channel connected to sensors embedded within the muscles - so-called muscle spindles - promotes the functional recovery of the damaged neuronal circuits in the spinal cord.

Muscle spindle sensory feedback provides trigger signal for recovery:


Limb movement activates sensory feedback loops from the muscle to the spinal cord. This specific feedback channel promotes the repair process of the damaged spinal network after injury. As a result, basic motor function can be restored. "The sensory feedback loops from muscle spindles are therefore a key factor in the recovery process," says Silvia Arber. After spinal cord injury, these nerve impulses keep providing information to the central nervous system - even when the transmission of information from the brain to the spinal cord no longer functions.
Advertisement

"An important trigger for the recovery process is the information conveyed from the muscle to the central nervous system and not only the top-down information the brain sends towards muscles," explains the first author Aya Takeoka. In addition, the researchers demonstrated that only basic locomotor functionality could be restored spontaneously after an injury. Fine locomotor task performance tested, however, remained permanently lost.

Treatments must start with activation of muscle spindles:


The study suggests that activation of muscle spindles is essential to promote the recovery process of damaged neuronal networks after spinal cord injury. Thus, therapeutic approaches should aim to extensively use the muscles, even if passively after an injury. The more intensely muscles are used in the movement process, the more muscle spindle feedback circuits are stimulated. By applying this principle, the repair of neuronal circuits and the accompanying recovery of basic motor skills will have the best chances of succeeding.

Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Research News

 New Insights into How the Immune System Responds to Spinal-Cord Injuries
New study findings delineate how aging affects the immune response following Spinal cord injury (SCI) and highlight the participation of the spinal cord meninges in repair.
Nearsightedness: Atropine Eye Drops may Slow Progression in Kids
A recent clinical trial suggests that the first medication therapy to reduce the progression of nearsightedness in children could be on the way.
Autoimmune Diseases Affect One in Ten: Study
Autoimmune disorders were found to be linked to Sjogren's, systemic lupus erythematosus, and systemic sclerosis.
Remarkable Journey of Transforming Lives With Brain Pacemaker
Successful brain pacemaker implantation has helped a 51year old Parkinson's disease patient to revitalize her quality of life.
What Are the Effects of Healthy Lifestyle on Osteoarthritis?
Recent recommendations on lifestyle behaviors to prevent progression of rheumatic and musculoskeletal diseases revealed.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Recovery from Spinal Cord Injury - Trigger Mechanism Revealed Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests