Radiation primes brain tumors for increased uptake of nanotherapeutics, allowing to develop a targeted nanoparticle therapy against the most aggressive type of brain tumor.
Low dose radiation therapy could increase the delivery of therapeutic nanoparticles used for glioblastomas, improving the possibility of utilizing both growth-factor-targeted and immune-system-based therapies against brain tumors, according to //Massachusetts General Hospital (MGH) investigators.// The team describes how pretreatment with low-dose radiation increased uptake of nanoparticles carrying small interfering RNA (siRNA) molecules and significantly improved survival in a mouse model of glioblastoma.
‘Radiation and iRGD-guided nanoparticle carrying the EGFR/PD-L1-targeting siRNAs found to have greatest benefit, increasing survival rate in dangerous brain tumors.’
Read More..
"We found that radiation therapy primes brain tumors for enhanced uptake of nanotherapeutics, allowing us to develop a targeted nanoparticle to deliver siRNAs for both immune checkpoint and targeted therapy against the most aggressive type of brain tumor," says Bakhos Tannous, PhD, of the Neuro-Oncology Division in the MGH Department of Neurology, senior author of the report published in ACS Nano. "A brief burst of radiation was able to increase uptake of the nanoparticle up to five-fold, enhancing the effects of targeted therapy, activating the immune response at the tumor site and prolonging survival." Read More..
While up to 60 percent of glioblastomas express the EGFR growth factor, a molecule used in targeted therapies against several types of cancer, EGFR-targeted therapies have had little success against the brain tumors.
Similarly immunotherapies directed against immune checkpoints such as CTLA-4 and PD-L1 have promising results against many cancers but not yet against glioblastoma. Some studies have suggested an association between EGFR activation and increased PD-L1 expression, raising the possibility that targeted both could increase the antitumor effects.
In order to deliver siRNAs targeting both EGFR and PD-L1 to brain tumors, the researchers developed a solid lipid nanoparticle guided by a tumor-targeting peptide called iRGD, which binds to a molecule present on blood vessels lining the tumor, allowing it to penetrate both the blood-brain and blood-tumor barriers.
Factors such as the small size and positive charge of this nanoparticle allow it to penetrate the blood-brain barrier; and like other solid lipid nanoparticles, its low cost, stability, biodegradability and ease of manufacture make it an attractive option, explains Gulsah Erel-Akba, PhD, of MGH Neuro-Oncology and Izmir Katip Celebi University in Turkey, the first author of the study.
Advertisement
Treatment with either radiation alone or with a nanoparticle containing a 'scrambled' siRNA molecule had no effect on either tumor growth or survival of the mice.
Advertisement
An associate professor of Neurology at Harvard Medical School, Tannous explains that radiation is known to counteract the immunosuppressive glioblastoma microenvironment in several ways, suggesting a dual action of both increasing nanoparticle delivery and enhancing the antitumor immune response. While aspects such as the optimum dose and timing of radiation pretreatment have yet to be determined, he notes, the same approach could be used to treat other aggressive tumors with siRNAs targeting different molecular pathways.
Source-Eurekalert