About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Protein Signaling Pathway may Cause Colonic Inflammation

by Megha Ramaviswanathan on April 3, 2018 at 12:42 PM
Protein Signaling Pathway may Cause Colonic Inflammation

A new research led by Tokyo Medical and Dental University (TMDU) in chemically induced mouse model of inflammatory bowel disease (IBD) reveals the role of protein signaling pathway in the generation of macrophages that may induce inflammation in the colon.

The intestine encounters more foreign substances, and potential toxins, than other parts of the body, so it is not surprising that a healthy gut is maintained by the tight control of immune responses. These protect against harmful pathogens but tolerate harmless bacteria. However, an inappropriate immune response can lead to chronic inflammation and the development of inflammatory bowel disease (IBD).

Advertisement


Macrophages are white blood cells that engulf pathogens and scavenge dying cells. They differentiate from another type of white blood cell, monocytes, and together these cells contribute to IBD pathology in the colon. However, the mechanisms underlying this differentiation, and how macrophages acquire properties to induce inflammation of the colon were unclear.

A team of Japanese scientists led by Tokyo Medical and Dental University (TMDU) used a chemically induced mouse model of IBD to show that a protein signaling pathway is crucial to the generation of macrophages that cause colonic inflammation. The signaling pathway enhances access to the promoters of genes encoding inflammatory mediators, thus increasing their expression. The study results were recently published in Mucosal Immunology.
Advertisement

Inflammatory monocytes and macrophages in the colons of IBD mice showed increased expression of proteins that promote inflammatory responses compared with other cell populations. They also expressed more Stat1, which is a transcription factor that upregulates gene expression in response to stimulation by IFNγ, a signaling molecule released in the presence of pathogens.

"Mice lacking Stat1 expression differentiated fewer inflammatory macrophages from their monocyte lineage, and additionally developed less severe inflammation of their colons than control mice," study first author Yusuke Nakanishi says. "This shows the importance of the IFNγ-Stat1 signaling pathway in colonic inflammation."

As well as contributing to the differentiation of inflammatory monocytes into macrophages capable of inducing colonic inflammation, the team also found that IFNγ signaling was required to maintain this macrophage population in the inflamed colon.

"We already knew that the response to pathogenic bacteria in the gut involves remodeling of the DNA-protein package known as chromatin, enabling access for the expression of genes involved in inflammation," corresponding author Toshiaki Ohteki says. "This led us to investigate the role of IFNγ in a similar context, and we found that IFNγ loosened the chromatin structure around the promoters of two genes encoding inflammatory mediators, leading to an increase in their expression."

This new understanding of how dysregulated macrophages develop in the colon during inflammation may lead to the identification of novel targets for IBD therapy.

Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

Connecting Genetic Variants to the Alzheimer's Puzzle
Researchers establish connections between Alzheimer's-linked genetic alterations and the functioning of brain cells.
Gene Therapy Sparks Spinal Cord Regeneration
Team at NeuroRestore introduces a groundbreaking gene therapy that has effectively promoted nerve regrowth and reconnection, post spinal cord injury.
Unlocking the Gut Microbiome's Influence on Bone Density
Scientists aim to pinpoint particular functional pathways affected by these bacteria that may have an impact on skeletal health.
Hop-Derived Compound Reduces Gut Microbe Linked to Metabolic Syndrome
Consuming a diet rich in saturated fats triggers persistent, low-level inflammation within the body, ultimately contributing to the onset of metabolic syndrome.
Breakthrough in Mosquitoes for Fighting Dengue Fever
Ae. aegypti mosquitoes are carriers of "arthropod-borne" or "arbo-" viruses, which encompass the dengue virus, yellow fever virus, Zika virus, and chikungunya virus.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Protein Signaling Pathway may Cause Colonic Inflammation Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests