by Kathy Jones on  March 27, 2012 at 9:31 PM Cancer News
 Pond Scum in Fight Against Cancer
A new study has revealed that microbes found in pond scum could be used to develop a new test detecting the cells that spread cancer through the bloodstream.

In a report, scientists described how the test is intended to not only identify the spreading of cells, but also allow lab analysis of those cells so that doctors can decide on the most effective treatment.

Yoshinobu Baba, PhD, a renowned scientist who led the research using the pond scum microbe called Euglena, discussed promising results with new agents that can both produce images of diseased tissue and deliver treatments.

Baba's team turned to Euglena in an effort to solve the medical problem of detecting the minute number of cancer cells that break off from the original, or primary, tumour site and travel through the bloodstream. Those cells, termed circulating tumour cells (CTCs), enable cancer to spread, or metastasise, and start growing at distant sites in the body.

Metastasis is the main reason why cancer can be such a difficult disease to treat. Detecting those cells would raise a red flag so that doctors could treat or more intensively monitor patients. Baba pointed out, however, that the small numbers of CTCs make that goal very difficult.

"In every 20 drops of blood, there are over 5 million white blood cells and 4 billion red blood cells, but there may be only one CTC," explained Baba, who is with Nagoya University in Japan.

"It is very hard to separate such small numbers of CTCs from the huge numbers of blood cells. After separation, we must also get information about the CTCs, such as the DNA sequence.

"That DNA sequence can provide further confirmation that that cancer has spread, lowering the risk of false alarms and perhaps help with decisions about treatment," he said.

Baba's solution is a test that takes place in a lab-on-a-chip, a small device made up of microchambers and channels for the Euglena, which are single-celled organisms with features of both plants and animals.

The scientists decided to use Euglena as a natural cargo carrier. Baba's team attaches an antibody onto the Euglena. That antibody can specifically bind to CTCs. The microbe (with antibody attached) is then placed into a microchamber that contains normal cells and a single CTC, simulating the very low concentration of CTCs that would be in a real cancer patient's blood sample. The antibody on the microbe binds to the cancer cell.

When the researchers shine a light on the microchamber, the Euglena, with CTC in tow, moves to a neighboring microchamber to escape from the light. Afterwards, the CTC could be removed from the microbe and tested further.

They are working on improvements so that the test will reliably detect very small concentrations of CTCs in real blood samples. They plan to couple the microchamber to a so-called nanopore, which can sequence the CTC's DNA after the separation to positively confirm cancer metastasis.

The study's report was presented in San Diego at the 243rd National Meeting and Exposition of the world's largest scientific society, American Chemical Society (ACS).

Source: ANI

Most Popular on Medindia