About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Placenta-on-a-chip to Test Drug Transfer Across the Human Placental Barrier

by Colleen Fleiss on February 20, 2018 at 1:00 AM
Font : A-A+

Placenta-on-a-chip to Test Drug Transfer Across the Human Placental Barrier

Feasibility of "organ-on-a-chip" platform in studying how drugs are transported across the human placental barrier has been demonstrated by researchers at the University of Pennsylvania's School of Engineering and Applied Science.

Some maternally-administered medications can enter the fetal bloodstream, but how the placenta determines which molecules can get through is still poorly understood. The ways of testing this process are limited. Animal models don't capture important details of human physiology, most in vivo research can't be ethically performed, and placentas donated after birth are only viable for a few hours, making it difficult to properly conduct complicated transport experiments.

Advertisement


A small number of drugs have been tested via this "ex vivo placental perfusion" method, however. By comparing the results of transport experiments conducted on their placenta-on-a-chip, the Penn team demonstrated their benchtop system could be an effective stand-in for a living organ in such research.

The study was led by Dan Huh, Wilf Family Term Assistant Professor in Bioengineering in Penn's School of Engineering and Applied Science, and Cassidy Blundell, a graduate student in the Huh lab. Other lab members, Yoon-Suk Yi, Lin Ma, Emily Tess, Megan Farrell and Andrei Georgescu, contributed to the study. They collaborated with Lauren M. Aleksunes, an associate professor in Rutgers University's Ernest Mario School of Pharmacy.
Advertisement

It was featured on the cover of the journal Advanced Healthcare Materials.

The Penn team's placenta-on-a-chip is a small block of silicone that houses two microfluidic channels separated by a porous membrane. The researchers grow human trophoblast cells on one side of the membrane and endothelial cells on the other. The layers of those two cell types mimic the placental barrier, which determines what passes from the maternal to the fetal circulatory systems.

By adding different molecules to the blood-like fluid flowing through the "maternal" microfluidic channel, the researchers can measure the rate at which they transfer to the "fetal" channel and how much they accumulate in the barrier itself.

The ability to test this process on human placentas is in high demand. Pregnant women are excluded from clinical drug trials, and animal models have severe limitations. Those limitations were tragically demonstrated in the case of thalidomide, where a morning sickness drug able to transport across the human placental barrier led to tens of thousands of birth defects and deaths.

Current state-of-the-art transport experiments are conducted on donated human placental tissue, but hooking up a living organ to the testing apparatus is a messy, finicky proposition.

"Ex vivo placental perfusion is a great method," Huh said, "but it has a pretty high failure rate, and the experimental set-up is complicated: it's prone to leaks and needs a high level of expertise. Most pharmaceutical companies are not going to be able to test their drugs using this method."

To validate their placenta-on-a-chip as a testing platform, Huh and his colleagues compared the transport of two drugs that have been studied via ex vivo placental perfusion: heparin, an anticoagulant, and glyburide, used in the treatment of gestational diabetes.

Heparin is understood to be too large a molecule to pass through the placental barrier, and the team's placenta-on-a-chip also bore out that result. Glyburide is considered safe to use during pregnancy, thanks to specialized efflux transporters expressed by the placental tissue that prevent maternally administered drug molecules from reaching the fetus. The placenta-on-a-chip was able to emulate this protective mechanism.

Further research and validation studies will be necessary before the placenta-on-a-chip sufficiently replicates its in vivo counterpart for the purposes of clinical testing.

"For example, the fluorescent marker we use changes the size and shape of the drug, which has an effect on transport," Blundell said. "Going forward, we'll be working with our pharmacologist collaborator, Lauren Aleksunes, and her lab to simulate more realistic situations."

Beyond pharmaceuticals, the Penn team's placenta-on-a-chip would be useful for better understanding the health impacts of a variety of things that could potentially cross into the fetal bloodstream.

"We'd like to use this system to test things beyond drugs, such herbal supplements, vitamins, and a whole host of things that women might take over the course of pregnancy," Blundell said.

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Goji Berries May Protect Against Age-Related Vision Loss
Tapping — A Proven Self-Applied Stress Intervention
Black Pepper as Preventive Measure Against Omicron
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Drug Toxicity Undescended Testicles Signature Drug Toxicity Varicocele Drugs Banned in India Testicle Pain - Symptom Evaluation Torsion Testis Orchidectomy 

Recommended Reading
Stem Cells - Cord Blood
Encyclopedia section of medindia gives general info about Cord Blood...
Placental Dysfunction Can Now Be Detected Early
A powerful non-invasive MRI technique helps detect early placental dysfunction in pregnancies ......
Consuming Your Own Placenta After Child Birth may be Harmful
The placenta plays a crucial role during pregnancy. Beware new mothers! Consuming your own placenta ...
Drug Toxicity
Drug toxicity is an adverse reaction of the body towards a drug that results as a side effect of a d...
Drugs Banned in India
Several drugs are either banned or withdrawn after introduction in the market....
Testicle Pain - Symptom Evaluation
A sudden, severe pain in the testis may be due to testicular torsion. Testicles inside the scrotum a...
Torsion Testis
Torsion occurs when the testis spins, twisting the spermatic cord, causing reduced blood flow and te...
Undescended Testicles
An undescended testicle / testis is one that has not descended into the scrotal sac before birth. It...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
open close
ASK A DOCTOR ONLINE
I have read and I do accept terms of use - Telemedicine

Advantage Medindia: FREE subscription for 'Personalised Health & Wellness website with consultation' (Value Rs.300/-)