Medindia LOGIN REGISTER
Medindia
Advertisement

Novel Tool to Study Neurological Disorders Developed

by Anjali Aryamvally on May 15, 2018 at 12:33 PM
Novel Tool to Study Neurological Disorders Developed

A novel tool, for the first time, helps determine how two distinct sets of neurons in the brain work together to control movement. The tool was developed by a research team at the National Institutes of Health.

The method, called spectrally resolved fiber photometry (SRFP), can be used to measure the activity of these neuron groups in both healthy mice and those with brain disease.

Advertisement


The scientists plan to use the technique to better understand what goes wrong in neurological disorders, such as Parkinson's disease (PD). The study is published in the journal Neuron.

According to Guohong Cui, M.D., Ph.D., head of the In Vivo Neurobiology Group at the National Institute of Environmental Health Sciences (NIEHS), part of NIH, the project began because he wanted to find out why patients with PD have problems with movement. Typically, PD motor symptoms include tremor, muscle stiffness, slowness of movement, and impaired balance.
Advertisement

Cui explained that an animal's ability to move was controlled by two groups of neurons in the brain called the direct pathway (D1) and indirect pathway (D2). Based on clinical studies of patients with PD and primate models, some researchers hypothesized that the loss of the neurotransmitter dopamine in the midbrain resulted in an imbalance of neural activities between D1 and D2. Since previous methods could not effectively distinguish different cell types in the brain, the hypothesis remained under debate. However, using SRFP, Cui's team was able to label D1 and D2 neurons with green and red fluorescent sensors to report their neural activity.

"Our method allowed us to simultaneously measure neural activity of both pathways in a mouse as the animal performed tasks," Cui said. "In the future, we could potentially use SRFP to measure the activity of several cell populations utilizing various colors and sensors."

With SRFP, Cui and colleagues found that when neural activity in D1 neurons is stronger than D2 neurons, the animal does a start and go, which means it starts and moves to another location. But, when the activity of D2 neurons is stronger than D1 neurons, the mouse does a start and stop, meaning it initiates a movement, but stops immediately.

Cui said both movements are normal for mice and analyzing them may help researchers predict what kind of movement the animal will make based on its neural activity. This advance may help explain what happens in the brains of mice with PD.

Two of Cui's team members, NIEHS Visiting Fellows Chengbo Meng, Ph.D., and Jingheng Zhou, Ph.D., share first-authorship of the Neuron article.

"The traditional method of electrophysiological recording is good when you want to measure electrical outputs of neurons, but it cannot tell you what type of neurons are generating those signals," Meng said. "SRFP is more specific, because we can distinguish between groups of neurons and see their activity."

While Cui's group is mainly interested in understanding PD, Zhou said SRFP will help researchers studying other brain conditions, such as Alzheimer's disease, stroke, multiple sclerosis, and addiction.



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

South Korea's 2050 Forecast: Negative Growth Amid Low Fertility
South Korea's total fertility rate, averaging the number of children a woman aged 15-49 has in her lifetime, dropped to 0.81.
New Immunotherapy for Psoriasis & Vitiligo
Scientists identified mechanisms governing immune cells, selectively removing troublemakers to reshape skin immunity. Benefits those with psoriasis, vitiligo.
2050 Forecast: 1.06 Billion Individuals to Face 'Other' Musculoskeletal Disorders
By 2050, an anticipated increase from 494 million cases in 2020 to 1.06 billion people with musculoskeletal disabilities is expected.
Gene Therapies Can Disrupt Gaucher Disease Drug Market
Experts consulted by GlobalData anticipate a significant overhaul in the Gaucher disease scenario because of forthcoming gene therapies in development.
NASH Cases Expected to Hit 26.55 Million in 7MM by 2032
Within the seven major markets, 12% to 20% of diagnosed prevalent NASH cases present severe liver damage (stage 4 liver fibrosis), denoting cirrhosis.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Novel Tool to Study Neurological Disorders Developed Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests