About Careers MedBlog Contact us

Novel Fibrinogen Nanofibers for Wound Healing

by Mohamed Fathima S on March 4, 2019 at 4:23 PM
Font : A-A+

Novel Fibrinogen Nanofibers for Wound Healing

A new method for making wound healing tissue scaffolds from a plasma protein found in blood has been developed by the researchers, which could be extremely useful for future use in wound healing and tissue engineering. Based on a study published in Biofabrication, the new tissue scaffolds can be utilized for either in vitro laboratory studies or direct applications in the body and can be attached or detached from the surface.

Lead author Professor Dorothea Brüggemann, from the University of Bremen, said: "The protein we used is called fibrinogen. It is an extracellular glycoprotein found in blood plasma and plays a major role in wound healing by assembling into a fibrous network to form a provisional extracellular matrix (ECM) that helps with wound closure."


Because of its versatile molecular interactions, fibrinogen is often processed into hydrogels and fibrous scaffolds for cell culture and tissue engineering applications in vitro. However, existing ways of doing this - such as electrospinning or the preparation of fibrin hydrogels - use organic solvents, high electric fields or enzymatic activity, which change the molecular structures or native protein functions of fibrinogen.

To solve this, the team wanted to find out if they could develop a simple and well-controllable way to make three-dimensional scaffolds while retaining fibrinogen's properties.

Professor Brüggemann said: "For the first time, we were able to assemble fibrinogen into dense, three-dimensional scaffolds without using high voltages, organic solvents or enzymatic activity. Our biofabrication process can be controlled simply by adjusting the fibrinogen and salt concentration, and the pH range."

The dimensions of the scaffolds reached diameters in the centimeter range and a thickness of several micrometers. With 100 to 300 nm, the diameters of self-assembled fibres were in the range of native ECM fibers and fibrin fibers in blood clots. Professor Brüggemann added: "This novel class of fibrinogen nanofibers holds great potential for various biomedical applications. For example, in future studies on blood coagulation our immobilized fibrinogen nanofibers could provide a valuable in vitro platform for initial drug screening. On novel wound healing applications, it will be highly interesting to study the interaction of fibroblasts and keratinocytes with our free-standing fibrinogen scaffolds."

Source: Eurekalert


Recommended Reading

Latest Research News

 Brain Region Linking Short-term to Long-term Memory Discovered
The model for memory consolidation claims that the hippocampus forms new memories and, as time goes on, trains the cortex to store enduring memories.
What Are the Effects of T Cells on Blood Pressure and Inflammation?
A new study explored the link between T immune cells in ill patients and mortality risk.
How Does a New Procedure Help Patients Avoid Leg Amputation?
Limb savage procedure benefits patients with severe vascular disease who are at risk for amputation of their limbs.
Omega-3 Can Save Alzheimer's Patients from Vision Loss
Does omega-3 help Alzheimer's patients? A new form of omega-3 helped restore specific markers of eye health in mice bred with aspects of early-onset Alzheimer's disease.
Why Is Asthma Linked to Increased Risk of Osteoarthritis?
Drugs used to inhibit the physiological responses for allergic reactions lessen osteoarthritis risk, revealed research.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close

Novel Fibrinogen Nanofibers for Wound Healing Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests