
Cancer cells are shown to demonstrate significantly different behavior than regular healthy cells. This phenomenon has potential to detect cancer in a tabletop setup thus leveraging doctors to perform frequent and economic tests with faster results and better disease prediction. A novel cancer cell detection method based on real time cell behavior tracking on engineered surfaces has been demonstrated by a team of researchers from the University of Texas at Arlington (UT-Arlington) in Texas, USA.
A synthetic RNA molecule is coated on chip surface to identify cancer cells. The otherwise 'calm and quiet' cells on this surface show interesting dancing behavior when their membrane receptors are matched to the surface RNA molecules. The behavior is quantified using interesting image processing techniques. The report appears in the December 2015 issue of TECHNOLOGY.
Cell motility is a phenomenon, where cells move by protruding and contracting sections of the membrane. This is a complex process performed through sophisticated balancing act between internal cytoskeleton structure and the cell membrane proteins.
Professor Samir Iqbal, of the UT Arlington and Principal Investigator on the paper, said, "The initial results that are shown here hold great potential for applications like cancer screening. A multiple chip based device targeting several proteins can lead to a generic cancer diagnostic platform. The advantage of the technology compared to others is that it is suitable for a quick diagnosis. Once matured, the method has potential to serve as an additional modality to identify tumor cells based on their physical behavior from blood samples or biopsy specimen directly drawn from patients."
Source: Eurekalert