About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Novel Adipokine Promotes Insulin Resistance and Inflammation

by Anjali Aryamvally on May 24, 2018 at 6:48 PM
Font : A-A+

Novel Adipokine Promotes Insulin Resistance and Inflammation

An international research team has identified a novel adipokine that favors the development of insulin resistance and systemic inflammation. In cases of severe obesity, this adipokine is secreted by the adipocytes of the abdominal fat tissue and released into the bloodstream. The new findings could contribute to the development of alternative approaches for the treatment of diseases caused by obesity. The study is published in the journal Diabetologia.

Advertisement


More than 2.8 million people die each year due to conditions related to overweight and obesity Overweight and the associated metabolic syndrome increase the risk of type 2 diabetes, specific types of cancer and cardiovascular disease. Scientific findings in recent years have confirmed this increased risk. The cause of the sequelae are chronic inflammatory responses. However, the molecular mechanisms that lead to these overweight-related inflammatory processes are still largely unknown. This is the starting point for the study of the international team of scientists led by PD Dr. Natalia Rudovich (Spital Bülach; Charité - Universitätsmedizin Berlin), Prof. Dr. Margriet Ouwens (German Diabetes Center Düsseldorf) and PD Dr. Olga Pivovarova of the German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE).

The researchers showed for the first time how the protein molecule Wingless-type signaling pathway protein-1 (WISP1) directly impairs insulin action in muscle cells and in the liver and thus leads to reduced insulin sensitivity. Already in 2015, the team led by the physician Rudovich and the biologist Pivovarova identified WISP1 as another possible link between obesity and systemic inflammatory responses . WISP1 was previously associated with the regulation of bone growth, the development of certain types of cancers and pulmonary fibrosis.
Advertisement

The current study shows that WISP1 cancels insulin-induced inhibition of glucose production (gluconeogesis) in murine hepatocytes and glycogen synthesis in human muscle cells. The synthesis quantity of the WISP1 protein correlates with the blood glucose levels in the oral glucose tolerance test (OGTT) and with the circulating level of heme oxygenase-1 (HO-1), an enzyme that promotes systemic inflammation, especially in obesity. "We suspect that increased WISP1 production from abdominal fat could be one of the reasons why overweight people often have an impaired glucose metabolism," said first author Tina Hörbelt of the German Diabetes Center Düsseldorf, a partner of the DZD. "One possible cause of increased WISP1 production and secretion from the abdominal fat cells could be the poor oxygen supply (hypoxia) of the tissues. This could lead to systemic inflammatory responses," explained DIfE researcher Pivovarova.

The new findings open up alternative approaches to the treatment of diseases caused by obesity. "For example, novel drugs could target and specifically prevent the WISP1 effect on muscles and liver cells and thus lead to improved insulin action in these tissues," said Rudovich, head diabetologist and endocrinologist at Spital Bülach. "However, it is still a long way from basic research to a viable treatment", the physician added. Nevertheless, the new findings would already contribute to a better understanding of the relationships between obesity, the immune system and metabolic diseases.



Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Research News

Is Telomere Shortening a Sign of Cellular Aging?
Link between chromosome length and biological aging marker discovered. The finding helps explain why people with longer telomeres have a lower dementia risk.
Why Is Integrated Structural Biology Important for Cystic Fibrosis?
Integrated structural biology helps discover how the cystic fibrosis transmembrane conductance regulator (CFTR) works.
Impact of Age-Related Methylation Changes on Human Sperm Epigenome
Link between advanced paternal age and higher risks for reproductive and offspring medical problems has been discovered.
Can Gene Astrology Predict Future Health Problems?
Can gene astrology predict disease risk? Yes, your genes can determine your future health and disease risk.
Tackling Football at Young Age: A Risk for Brain Decline Later
Injury to the white matter explains why football players are at an increased risk for cognitive and behavioral problems later in life.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Novel Adipokine Promotes Insulin Resistance and Inflammation Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests