Noninvasive Tool Tracks Efficacy of Transplanted Stem Cells

by Ramya Rachamanti on  May 23, 2019 at 4:45 PM Genetics & Stem Cells News
RSS Email Print This Page Comment bookmark
Font : A-A+

Blood test could be used to know the effectiveness of transplanted stem cells, according to the researchers from the University of Maryland School of Medicine (UMSOM), the University of Pennsylvania and Emory University.
Noninvasive Tool Tracks Efficacy of Transplanted Stem Cells
Noninvasive Tool Tracks Efficacy of Transplanted Stem Cells

Stem cell based therapies to foster the heart muscle and treat other diseases are showing promise in various human clinical trials. But, lack of a repeatable time-sensitive and noninvasivetool to assess the effectiveness of the transplanted cells has slowed progress in the stem cell field.

Show Full Article

Researchers aimed to achieve their goal by analyzing tiny cellular components called exosomes, secreted from the transplanted stem cells into the recipient blood. They tested their theory in rodent models of heart attack, or myocardial infarction, after transplanting two types of human cardiac stem cells and monitoring their circulating exosomes. The researchers found circulating exosomes delivered cell components to the target heart muscle cells, resulting in cardiac repair. Results are published in the journal Science Translational Medicine.

"Exosomes contain the signals of the cells they're derived from - proteins as well as nucleic acids and micro ribonucleic acids (miRNAs) - which affect receptor cells and remodel or regenerate the organ we're targeting," said study co-senior author Sunjay Kaushal, PhD, MD, Professor of Surgery at UMSOM and Director of Pediatric Cardiac Surgery at the University of Maryland Children's Hospital. "We now have a tool to determine whether stem cell therapy will be efficacious for an individual patient, not only for the heart but for any organ that received stem cell therapy."

Through the blood test, which the researchers call a "liquid biopsy," the researchers monitored human cardiosphere-derived cells (CDCs) and cardiac progenitor cells (CPCs) transplanted into rat hearts following myocardial infarction. Blood plasma concentrations of the exosomes were compared seven days after transplant.

After purifying the CDC/CPC-derived exosomes, the researchers found the exosomes contained miRNAs associated with heart muscle recovery. Further, they found CPCs and CDCs produced in culture differed in contents from exosomes produced by transplanted cells in the living organism.

"Our study should be considered the first stepping stone in understanding what stem cells do, but an important point is that the cells we identified as responding changed their gene expression, behavior and secretions," said co-lead author Sudhish Sharma, PhD, UMSOM Assistant Professor of Surgery. "By using these biomarkers, we can understand the mechanism and extent of recovery."



Source: Eurekalert

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions
Advertisement

More News on:

Stem Cells - Cord Blood Stem Cells - Fundamentals Parkinsons Disease Surgical Treatment Genetics and Stem Cells Bone Marrow Transplantation Tissue Engineering and Regenerative Medicine Stem Cells Stem Cell Therapy 

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Stay Connected

  • Available on the Android Market
  • Available on the App Store

News Category

News Archive