About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

New Tool for Studying Autoimmune Diseases

by Kathy Jones on March 15, 2012 at 8:44 PM
Font : A-A+

 New Tool for Studying Autoimmune Diseases

A way to recreate an individual's immune system in a mouse has been developed by Columbia University Medical Center (CUMC) scientists.

The "personalized immune mouse" offers researchers an unprecedented tool for individualized analysis of abnormalities that contribute to type 1 diabetes and other autoimmune diseases, starting at the onset of disease. The findings were published today in the online edition of Science Translational Medicine.

Advertisement

The mouse model could also have clinical applications, such as predicting how a particular patient might respond to existing drugs or immunotherapies, reports senior author Megan Sykes, Michael J. Friedlander Professor of Medicine and Professor of Microbiology & Immunology and Surgical Sciences (in Surgery) at CUMC. Dr. Sykes is also Director for the Columbia Center for Translational Immunology. In addition, the model might prove useful for developing individualized immunotherapies for fighting infection or cancer or for lessening a patient's rejection of transplanted tissue.

Researchers have been searching for new ways to tease apart the various factors that contribute to autoimmune disease. "While large-scale studies of human populations have provided important clues to the genetic basis of immune diseases, they have offered little information about the specific role the genes play," says Dr. Sykes. "It's difficult to isolate these mechanisms when looking at groups of patients who have had disease for different lengths of time or have been receiving different treatments. And the fact that they already have the disease makes it difficult to distinguish what underlies and propagates the autoimmune process."
Advertisement

Several research groups have attempted to create a personalized immune mouse. However, each model has had significant limitations, such as an inability to generate the full complement of immune cells and incompatibilities between tissues used to recreate the human immune system, leading to graft-versus-host disease.

Dr. Sykes' model, in contrast, is able to recreate a robust and diverse human immune system, including T cells, B cells, and myeloid cells (which generate a variety of immune cells), free of immune incompatibilities.

The model is made by transplanting human bone marrow stem cells (also known as CD34+ cells), along with a small amount (approximately 1 cubic mm) of HLA-matched immature thymus tissue, into an immunodeficient mouse. (The HLA, or human leukocyte antigen, system mediates interactions among various immune cells.) The thymus tissue is implanted into the mouse's kidney capsule, a thin membrane that envelops the kidney and serves as an incubator. Within six to eight weeks, the transplanted thymus tissue is seeded by circulating human CD34+ cells (which are infused into the mouse's bloodstream), and begins generating human immune cells from the CD34+ cells.

A key to the model's success was the team's discovery that freezing and thawing the transplanted thymus tissue, as well as administering antibodies against CD2 (a glycoprotein that mediates T cell development and activation), depletes mature T cells from the tissue graft. This prevents rejection of the human CD34+ cells and graft-versus-host disease, while preserving function of the thymus tissue.

Dr. Sykes intends to use the personalized immune mouse to study type 1 diabetes. "We hope to find out what is fundamentally different about patients' immune systems, compared with those of healthy individuals, before any disease develops," she says.

The studies should also reveal more about the genetics of type 1 diabetes. "A number of HLA-associated genes have been linked to type 1 diabetes," she explains. "About a third of the population has one of more of these genes. But a much smaller percentage of the population actually develops the disease. What this means is, the HLA genes are necessary, but not sufficient, to cause type 1 diabetes. Using the personalized immune mouse, we expect to learn more about the role that non-HLA genes play in the disease."
Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
International Day of Persons with Disabilities 2021 - Fighting for Rights in the Post-COVID Era
Effect of Blood Group Type on COVID-19 Risk and Severity
Woman with Rare Spinal Cord Defect from Birth Sues Doctor
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Chemotherapy Myasthenia Gravis Vitiligo Autoimmune Disorders Granulomatosis with Polyangiitis (GPA) Microscopic Polyangiitis 

Recommended Reading
Autoimmune Disorders
Autoimmune disorders occur when the immune system fails to recognize the body as 'self' and attacks ...
Goodpasture Syndrome
Goodpasture Syndrome is an autoimmune condition affecting the lungs and kidneys....
Microscopic Polyangiitis
Microscopic polyangitis, infection of small blood vessels, presents with general symptoms of fever, ...
Chemotherapy
‘Chemo’ means medicine or ‘drug’; ‘therapy’ means ‘treatment’. Chemotherapy refers to the use of cy...
Granulomatosis with Polyangiitis (GPA)
Granulomatosis with Polyangiitis (GPA) is a type of vasculitis that usually affects the upper airway...
Myasthenia Gravis
Myasthenia gravis is the commonest disorder of neuromuscular transmission. Autoimmune myasthenia gra...
Vitiligo
Vitiligo is a skin disease characterized by patches of unpigmented skin. Vitiligo is usually slowly ...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use