A new therapy developed by researchers could help prolong useful vision and delay total blindness in people with retinitis pigmentosa condition.
Damping noise in hyperactive eye cells was found to prolong sight in people suffering from retinitis pigmentosa, a genetic condition, that results in progressive vision loss, eventually leading to blindness, said University of California, Berkeley //researchers. The treatment -- involving either a drug or gene therapy -- works by reducing the noise generated by nerve cells in the eye, which can interfere with vision much the way tinnitus interferes with hearing. UC Berkeley neurobiologists have already shown that this approach improves vision in mice with a genetic condition, retinitis pigmentosa, that slowly leaves them blind.
‘Reducing noise in hyperactive eye cells should bring images more sharply into view for people with retinitis pigmentosa and other types of retinal degeneration, including the most common form, age- related macular degeneration.’
"This isn't a cure for these diseases, but a treatment that may help people see better. This won't put back the photoreceptors that have died, but maybe give people an extra few years of useful vision with the ones that are left," said neuroscientist Richard Kramer, a professor of molecular and cell biology at UC Berkeley. "It makes the retina work as well as it possibly can, given what it has to work with. You would maybe make low vision not quite so low." Kramer's lab is testing drug candidates that already exist, he said, though no one suspected that these drugs might improve low vision. He anticipates that the new discovery will send drug developers back to the shelf to retest these drugs, which interfere with cell receptors for retinoic acid. Many such drug candidates were created by pharmaceutical companies in the failed hope that they would slow the development of cancer.
"There has been a lot of excitement about emerging technologies that address blinding diseases at the end stage, after all of the photoreceptors are lost, but the number of people who are candidates for such heroic measures is relatively small," Kramer said. "There are many more people with impaired vision -- people who have lost most, but not all, of their photoreceptors.
They can't drive anymore, perhaps they can't read or recognize faces, all they have left is a blurry perception of the world. Our experiments introduce a new strategy for improving vision in these people."
Kramer and his UC Berkeley colleagues reported their results this week in the journal Neuron. 'Ringing in the eyes'
Advertisement
Kramer focused on the role of retinoic acid after he heard that it was linked to other eye changes resulting from retinal degeneration. The dying photoreceptors -- the rods, sensitive to dim light, and the cones, needed for color vision -- are packed with proteins called an opsins. Each opsin combines with a molecule of retinaldehyde, to form a light-sensitive protein called rhodopsin.
Advertisement
"When we inhibit the receptor for retinoic acid, we reverse the process and shut off the hyperactivity. People who are losing their hearing often get tinnitus, or ringing in the ears, which only makes matters worse. Our findings suggest that retinoic acid is doing something similar in retinal degeneration -- essentially causing 'ringing in the eyes,'" Kramer said. "By inhibiting the retinoic acid receptor, we can decrease the noise and unmask the signal."
The researchers sought out drugs known to block the receptor and showed that treated mice could see better, behaving much like mice with normal vision. They also tried gene therapy, inserting into ganglion cells a gene for a defective retinoic acid receptor. When expressed, the defective receptor bullied out the normal receptor in the cells and quieted their hyperactivity. Mice treated with gene therapy also behaved more like normal, sighted mice.
Ongoing experiments suggest that the brain, too, responds differently once the receptor is blocked, showing activity closer to normal.
While Kramer continues experiments to determine how retinoic acid makes the ganglion cells become hyperactive and how effective the inhibitors are at various stages of retinal degeneration, he is hopeful that the research community will join the effort to repurpose drugs originally developed for cancer into therapies for improving human vision.
Source-Eurekalert