About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

New Therapies can Evolve Based on Findings on Pollution Damage to Human Airways

by Kathy Jones on January 20, 2011 at 8:59 PM
Font : A-A+

 New Therapies can Evolve Based on Findings on Pollution Damage to Human Airways

The mechanism behind how nanoparticles from diesel exhaust damage lung airway cells has been identified by researchers from Duke University Medical Center. This is a finding that could lead to new therapies for people susceptible to airway disease.

The scientists also discovered that the severity of the injury depends on the genetic make-up of the affected individual.

Advertisement

"We gained insight into why some people can remain relatively healthy in polluted areas and why others don't," said lead author Wolfgang Liedtke, M.D., Ph.D., assistant professor in the Duke Department of Medicine and an attending physician in the Duke Clinics for Pain and Palliative Care.

The work was published on-line in the journal Environmental Health Perspectives on Jan. 18.

Diesel exhaust particles, a major part of urban smog, consist of a carbon core coated with organic chemicals and metals. The Duke team showed that the particle core delivers these organic chemicals onto brush-like surfaces called cilia, which clear mucus from the airway lining.
Advertisement

Contact with these chemicals then triggers a "signaling cascade," as the cells respond.

In some patients, who have a single "letter" difference in their DNA, a circuit called the TRPV4 ion channel signals more strongly in response to the pollutants. Previous research showed that this gene variant makes humans more liable to develop chronic-obstructive disease (COPD), and the current study provides an explanation for this observation.

About 75 percent of people have the version of the gene MMP-1 that leads to greater production of the molecule MMP-1 mediator, which destroys lung tissue. This genetic make-up allows for a turbo-charged production of MMP-1, which damages airways and lungs at multiple levels, Liedtke said.

A more fortunate 25 percent of people escape this high level of production of MMP-1, which may be reflected in the fact that certain individuals can better manage the effects of air pollution without grave airway damage.

The injurious molecule MMP-1 is known to enhance the development of certain devastating lung diseases, such as chronic-obstructive pulmonary disease (COPD), a top-ten ailment in world-wide morbidity and mortality, according to the World Health Organization. The devastating, tissue-destructive actions of MMP-1 can also lead to lung emphysema, which is chronic reduction of the lung surface dedicated to gaseous exchange, and to the spread of lung cancer cells, through migration of these cells from lung tissue that has become cancerous.

The new study also provides a direction for developing therapeutics for those who are genetically more susceptible to air pollution and airway damage, Liedtke said. "If we can find a way to stop the hyperactivation of MMP-1 in response to diesel-engine exhaust particles and reduce it to levels that the airways can manage, then we will be helping a large number of people worldwide," he said. "It is attractive to envision inhaled TRPV4 inhibitor drugs, rather than swallowing a pill or taking an injection. I envision this as rather similar to inhaled drugs for allergic airway disease that are currently available."



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
World Heart Day in 2022- Use Heart for Every Heart
Anemia among Indian Women and Children Remains a Cause of Concern- National Family Health Survey-5
H1N1 Influenza Prevention in Children: What Parents Need to Know
View all
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Pollution 

Most Popular on Medindia

The Essence of Yoga Blood Pressure Calculator Drug - Food Interactions Pregnancy Confirmation Calculator A-Z Drug Brands in India Loram (2 mg) (Lorazepam) Iron Intake Calculator Calculate Ideal Weight for Infants Nutam (400mg) (Piracetam) Hearing Loss Calculator
This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
×

New Therapies can Evolve Based on Findings on Pollution Damage to Human Airways Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests