About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

New Therapeutic Device may Help Zap Cancer Cells

by Medindia Content Team on October 23, 2007 at 5:16 PM
Font : A-A+

New Therapeutic Device may Help Zap Cancer Cells

Researchers have developed a therapeutic device that not only has the potential to capture cells as they flow through the blood stream and treat them but can also zap cancer cells spreading to other tissues, or signal stem cells to differentiate. Massachusetts Institute of Technology (MIT) and University of Rochester researchers' concept leverages cell rolling, a biological process that slows cells down as they flow through blood vessels.

As the cells slow, they adhere to the vessel walls and roll, allowing them to sense signals from nearby tissues that may be calling them to work. Immune cells, for example, can be slowed and summoned to battle an infection.

Advertisement

"Through mimicking a process involved in many important physiological and pathological events, we envision a device that can be used to selectively provide signals to cells traveling through the bloodstream," said Jeffrey M. Karp of the Harvard-MIT Division of Health Sciences and Technology. "This technology has applications in cancer and stem cell therapies and could be used for diagnostics of a number of diseases," he added.

Led by Karp, the research team started with technology to induce cell rolling for study. With an implantable therapeutic device in mind, they improved that cell rolling technology to make it safe, more stable and longer lasting. In the body, P-selectin and other selectin proteins regulate cell rolling in blood vessels. When P-selectin is present on a vessel's inner wall, cells that are sensitive to it will stick to that patch and begin to roll across it.
Advertisement

To induce rolling in the laboratory, the original technology weakly adheres P-selectin to a glass surface and flows cells across it. This surface treatment remains stable for several hours then breaks down. "While this method is useful for experiments, it's not good for long-term stability," Karp said. An implantable device needs a coating that lasts weeks or even months so that patients won't need to come in frequently for replacements.

For the technology advancement, the research team experimented with several chemical methods to immobilize P-selectin on a glass surface. They identified a polyethelene glycol (PEG) coating that strongly bonded to P-selectin. This coating is also "non-fouling," meaning it does not react with or accumulate other proteins, so it is potentially safe for use in an implant.

P-selectin remains stable on this coating for longer than the original technology. In tests with microspheres coated with a molecule that interacts with P-selectin, these spheres slowed down significantly as they flowed over the surface coated with layers of PEG and P-selectin. The effect was stable past four weeks, the longest the devices have been tested.

To validate that this technology works with cells that are sensitive to P-selectin, the research team flowed neutrophils (white blood cells) across the coated surface. They too slowed and rolled on surfaces treated with the new coating, and the effect again lasted for at least four weeks. The next step is translating these results to animal studies and using the technology to slow and capture stem cells and cancer cells circulating in the blood stream.

Ultimately CellTraffix, Inc., a sponsor of this technology and its licensee, wants to apply the technique to a device that is either implanted into the blood stream or appended as a shunt. In addition to PEG and selectin molecules, the device would also include a therapeutic agent. Such an agent would interact only with certain cells for a specific purpose.

The study is published in the October 20 online issue of the journal Langmuir, by the American Chemical Society.

Source: ANI
LIN/C
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Top 7 Benefits of Good Oral Hygiene
Healthy and Safer Thanksgiving 2021
Long-Term Glycemic Control - A Better Measure of COVID-19 Severity
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Cancer and Homeopathy Parkinsons Disease Surgical Treatment Cancer Facts Cancer Common Lifestyle Habits that Cause Diseases Health Benefits of Dandelion Plant Immune Checkpoint Inhibitors for Cancer Treatment Non-Communicable Diseases 

Recommended Reading
Electric Field Therapy to Zap Cancerous Tumours
Boffins have made a new device, Novo-TTF (Tumor-Treating Fields), for treating brain cancer ......
Development of the New Cancer Stem Cells can Facilitate Breast Cancer Research
Robert Weinberg member of the lab of whitehead has created breast cancer stem cells in a petridish ....
Unexplored Routes For Cancer Therapy
A study in the journal Physics Today suggests that low-intensity electric fields can disrupt the ......
Common Lifestyle Habits that Cause Diseases
Cigarette smoking, unhealthy diets, overuse of alcohol, and physical inactivity are some of the most...
Health Benefits of Dandelion Plant
What is dandelion? Dandelion greens are nutrition powerhouses with a wide range of health benefits. ...
Immune Checkpoint Inhibitors for Cancer Treatment
Immune checkpoint inhibitors are promising drugs to treat a variety of cancers and the FDA has appro...
Non-Communicable Diseases
Non-Communicable Diseases (NCDs) are a group of chronic non-infectious diseases which include Cardio...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use