About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

New Technology Shows Promise for Reinventing Drug Discovery

by Kathy Jones on April 24, 2013 at 12:45 AM
Font : A-A+

 New Technology Shows Promise for Reinventing Drug Discovery

Harvard Stem Cell Institute (HSCI) researchers have found a compound more effective in protecting the neurons killed in amyotrophic lateral sclerosis (ALS) than two drugs that failed in human clinical trials after hundreds of millions of dollars had been invested in them. The researchers made this discovery by using a new stem-cell based drug screening technology.

The new stem cell screening technique developed by Lee Rubin, a member of HSCI's Executive Committee and a professor in Harvard's Department of Stem Cell and Regenerative Biology, successfully predicted that the two drugs that eventually failed in the third and final stage of human testing would, in fact, fail.

Advertisement

"It's a deep, dark secret of drug discovery that very few drugs have been tested on human-diseased cells before being tested in a live person," said Rubin, who heads HSCI's program in translational medicine.

"We were interested in the notion that we can use stem cells to correct that situation."

Rubin's model is built on an earlier proof-of-concept developed by HSCI Principal Faculty member Kevin Eggan, who demonstrated that it was possible to move a neuron-based disease into a laboratory dish using stem cells carrying the genes of patients with the disease.
Advertisement

In a paper published today in the journal Cell Stem Cell, Rubin lays out how he and his colleagues applied their new method of stem cell-based drug discovery to ALS. The disease is associated with the progressive death of motor neurons, which pass information between the brain and the muscles. As cells die, people with ALS experience weakness in their limbs followed by rapid paralysis and respiratory failure. The disease typically strikes later in life. Ten percent of cases are genetically predisposed, but for most patients there is no known trigger.

Rubin's lab began by first studying the disease in mice, growing billions of motor neurons from mouse embryonic stem cells, half normal and half with a genetic mutation known to cause ALS.

Investigators starved the cells of nutrients and then screened five thousand drug-like molecules to find any that would keep the motor neurons alive.

Several hits were identified, but the molecule that best prolonged the life of both normal and ALS motor neurons was kenpaullone, previously known for blocking the action of an enzyme (GSK-3) that switches on and off several cellular processes, including cell growth and death. "Shockingly, this molecule keeps cells alive better than the standard culture medium that everybody keeps motor neurons in," Rubin said.

Kenpaullone proved effective in several follow-up experiments that put mouse motor neurons in situations of certain death. Neuron survival increased in the presence of the molecule whether the cells were programmed to die or placed in a toxic environment.

After further investigation, Rubin's lab discovered kenpaullone's potency comes from its ability to also inhibit HGK - an enzyme that sets off a chain of reactions that leads to motor neuron death. This enzyme was not previously known to be important in motor neurons or associated with ALS, marking the discovery of a new drug target for the disease.

"I think that stem-cell screens will discover new compounds that have never been discovered before by other methods," Rubin said. "I'm excited to think that someday one of them might actually be good enough to go into the clinic."

To find out if kenpaullone works in diseased human cells, Rubin's lab exposed patient motor neurons and motor neurons grown from human embryonic stem cells to the molecule, as well as two drugs that did well in mice but failed in phase III human clinical trials for ALS. Once again, kenpaullone increased the rate of neuron survival, while one drug saw little response, and the other drug failed to keep any cells alive.

According to Rubin, before kenpaullone could be used as a drug, it would need a substantial molecular makeover to make it better able to target cells and find its way into the spinal cord so it can access motor neurons.

"This is kind of a proof of principle on the do-ability of the whole thing," he said. "I think it's possible to use this method to discover new drug targets and to prevalidate compounds on real human disease cells before putting them in the clinic."

In the meantime, Rubin's next steps will be to continue searching for better drug-like compounds that can inhibit HGK and thus enhance motor neuron survival. He believes that the new information that comes out of this research will be useful to academia and the pharmaceutical industry.

"These kinds of exploratory screens are hard to fund, so being part of the HSCI" - which provided some of the funding - "has been absolutely essential," Rubin said.



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
International Day of Persons with Disabilities 2021 - Fighting for Rights in the Post-COVID Era
Effect of Blood Group Type on COVID-19 Risk and Severity
Woman with Rare Spinal Cord Defect from Birth Sues Doctor
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Drug Toxicity Clinical Trials Clinical Trials - The Past and The Future Clinical Trials - Different Phases of the trial Signature Drug Toxicity 

Recommended Reading
Stem Cells - Fundamentals
Encyclopedia section of medindia gives general info about Stem Cells...
Stem Cells - Cord Blood
Encyclopedia section of medindia gives general info about Cord Blood...
Bone Marrow Aspiration and Biopsy
Bone marrow biopsy and aspiration is the removal of some bone marrow tissue for diagnosis and ......
Clinical Trials
Clinical trials are experiments that yield useful information to clinicians if a particular treatmen...
Clinical Trials - Different Phases of the trial
Clinical trials serve as a vital component for improving the treatment of medical conditions as they...
Clinical Trials - The Past and The Future
Many of the drugs that are used today have been discovered by chance or often by mere serendipity...
Drug Toxicity
Drug toxicity is an adverse reaction of the body towards a drug that results as a side effect of a d...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use