New technology developed by scientists helps detect bacteria in minutes by zapping the bacteria with electricity. This rapid technique can detect antibiotic-resistant bacteria.

‘New technology detects live bacteria in minutes instead of waiting for lab-test results which can take days.
’

For example, 8% of people with severe blood infection sepsis will die for every hour of delay in proper treatment. More routine problems like urinary tract infections are difficult to diagnose and some people cannot get a clear answer about their symptoms due to difficulties with detecting low-level infections. Studies have found 20-30% of urinary tract infections are missed by dipstick tests used for detecting bacteria in the urine. 




Scientists at the University of Warwick have discovered that healthy bacteria cells and cells inhibited by antibiotics or UV light showed completely different electric reactions.
They made this discovery by combining biological experiments, engineering and mathematical modelling. Published in Proceedings of the National Academy of Sciences of the USA (PNAS), these findings could lead to the development of medical devices which can rapidly detect live bacterial cells, evaluate the effects of antibiotics on growing bacteria colonies, or which could identify different types of bacteria and reveal antibiotic-resistant bacteria.
The researchers have an ambitious plan to deliver the technology to market to maximise social good and have founded a start-up company Cytecom to commercialise the idea. The company has been awarded a grant from Innovate UK, the national innovation funding agency. This governmental support accelerates the process and the devices will be available to researchers and businesses in the very near future.
Dr Munehiro Asally, Assistant Professor at the University of Warwick comments:
Advertisements
Dr James Stratford, from the School of Life Sciences and Warwick spinout company Cytecom comments:
Advertisements
Dr Yoshikatsu Hayashi, from the University of Reading, comments:
"Using the widely used mathematical model in Neuroscience, we revealed a common mechanism of excitable cells, neuron and bacteria cells, and the extended neuronal model could explain two distinct electric reactions of healthy and unhealthy bacteria cells. Surprisingly, a single parameter representing the degree of non-equilibrium across the membrane was sufficient to explain the distinct responses of the cells. This is an important step towards understanding the origin of electrical signalling."
Source-Eurekalert