About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

New Technique to Isolate Placental Cells for Non-invasive Genetic Testing Developed

by Colleen Fleiss on August 28, 2019 at 3:15 AM
Font : A-A+

New Technique to Isolate Placental Cells for Non-invasive Genetic Testing Developed

A simple method for isolating placental cells from cervical swabs has been developed by Brown University researchers. The technique, described in the journal Scientific Reports, could aid in developing less invasive ways of diagnosing genetic disorders in developing fetuses.

The technique isolates trophoblast cells -- placental cells that carry the complete fetal genome -- by taking advantage of their tendency to settle to the bottom of microwell plates. The researchers lay out a procedure for optimally isolating the cells, enabling them to be picked individually from the plate.

Advertisement


"This is the first study to use cell settling for enriching trophoblast cells from a heterogeneous cervical cell population," the researchers write. "Ultimately, we provide a technique that is quick, inexpensive, minimizes cell loss, and results in retrieval of individual trophoblast cells." The work was led by the lab of Anubhav Tripathi, a biomedical engineering lab at Brown that specializes in lab-on-a-chip diagnostics -- in collaboration with the Shukla Lab for Designer Biomaterials at Brown's School of Engineering, led by Anita Shukla, and with PerkinElmer, Inc.

Currently, the only way to diagnose genetic disorders in developing fetuses is by retrieving trophoblasts through amniocentesis or chorionic villus sampling, both invasive procedures that carry a small risk of miscarriage. Blood tests that look for fetal genetic material in the mother's bloodstream can be useful screening tools, but they can't be used for definitive diagnosis. And screening is limited to whatever genetic material happens to turn up in the blood, which limits the range of disorders that can be screened.
Advertisement

Trophoblasts are known to be present in the cervical canal in the early stages of pregnancy, but the quantities are small, and isolating those cells from cervical cells and mucus is difficult. For this new study, a team of researchers led by Christina Bailey-Hytholt, a Ph.D. candidate in biomedical engineering at Brown, wanted to see if there were any physical characteristics of trophoblasts that might help in isolating them from cervical cells and other material.

Those characteristics suggested that they may settle more quickly than cervical cells when cell mixtures are placed on microwell plates.

Using polystyrene plates, the researchers found that the trophoblasts did indeed settle more quickly than cervical cells. The study showed that the maximum separation of cell types was achieved around four minutes after the cells were put on the plate. At that point, the cervical cells and mucus on top of the cells could be removed, leaving a large concentration of trophoblasts behind. The technique increased the proportion of trophoblasts in samples by 700%, enabling individual trophoblasts to be picked out for genetic testing.

No specialized equipment beyond what any diagnostic lab would already have is required to perform the technique, the researchers say. And takes only a few minutes to produce the cells necessary for genetic testing.

"There is a large need for biomedical engineering techniques toward advancing prenatal and women's health," Bailey-Hytholt said. "Our work is a step toward more non-invasive prenatal testing options."

Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Genetics & Stem Cells News

A Ray of Hope: Adrenal Hyperplasia may Get a Cure Soon
Scientists have developed the first humanized mouse model for a rare hereditary condition.
Placenta Joins the Brain in Determining Genetic Risk of Schizophrenia
A recent study discovered that the placenta, rather than only the brain, is crucial in determining the genetic risk of schizophrenia.
Scientists Discover Gene Responsible for Severe Facial Defects
FOXI3 gene was found to be involved in Goldenhar syndrome, one form of developmental disorder, revealed research.
Beyond the Blueprint: Understanding the Role of Epigenetics
Contrary to previous beliefs, genes may not be fixed and can be influenced by environmental factors and lifestyle choices, according to modern scientific research.
Gene Therapy Shows Promise in Inherited Eye Disease Trials
Gene therapy successfully tested on dogs with inherited eye disease is now poised for clinical use in humans.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

New Technique to Isolate Placental Cells for Non-invasive Genetic Testing Developed Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests