Partly because of HIV virus’ intense ability to mutate HIV has evaded vaccine-makers for thirty years.

With a mathematical tool called random matrix theory, the team searched for high-order evolutionary constraints in the so-called Gag region of HIV. The researchers were looking for collectively co-evolving groups of amino acids with a high number of negative correlations (meaning multiple mutations would destroy the virus) and a low number of positive correlations (meaning the virus could survive multiple mutations). They found this combination in a region, which they call Gag sector 3, that is involved in stabilizing the protein shell of the virus: too many mutations here, and the virus' structure would collapse.
Interestingly, when the team studied HIV-infected individuals whose bodies are naturally able to fend off the virus' attacks – so-called "elite controllers" – they found that these individuals' immune systems preferentially targeted Gag sector 3 over other proteins.
At the moment, the study authors are working to extend their methods to HIV proteins beyond Gag. The team is also developing elements of the active components of a vaccine that would prime the immune system to selectively target Gag sector 3 proteins. They expect to begin testing in animal models soon.
The presentation, "Analysis of collective coevolution in HIV proteins suggests strategies for rational vaccine design," will be presented by Dr. Chakraborty's graduate student Karthik Shekhar at 12:30 p.m. on Sunday, Feb. 26, 2012, in the San Diego Convention Center, Room 24ABC.
Source-Eurekalert