
USC Viterbi School of Engineering scientists developed a nanoparticle - consisting of a tiny fatty sac - that works like a smart bomb to carry drugs through the bloodstream and deliver them directly to tumors. The scientists loaded this nanoparticle with OXO, and used it to treat mice that had been injected with human breast cancer cells. While OXO did not shrink primary tumors in the breast, it greatly reduced metastatic tumors in the lungs with minimal toxic side effects. The findings appear today in Nature Communications.
The study comes from the lab of USC stem cell researchers at the Keck School of Medicine of USC and offers a novel solution to suppress cancer from metastasizing into the lungs. It's positive news for patients with triple-negative breast cancer (TNBC) - the deadliest type - that comprises 20 percent of breast cancer cases and is particularly difficult to treat. Researchers are intensely interested in finding new treatments for TNBC. "For this subtype of breast cancer, few treatment options are available to target metastasis, and typically, these treatments are associated with high toxicity," said Min Yu, an assistant professor of stem cell biology and regenerative medicine, and a principal investigator at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, and the USC Norris Comprehensive Cancer Center. "A better understanding of tumor cells and their interactions with organs and tissues could help us design targeted therapies specific for metastasis."
Breast cancer is the most common cancer in American women, except for skin cancers, and the average risk of developing breast cancer is 1 in 8 for a woman in the United States, according to the American Cancer Society. About 266,120 new cases of invasive breast cancer are diagnosed in women each year, and about 40,920 women will die from it, the ACS estimates. The USC research is in early-stage development using animal tests. The method the researchers discovered shows promise, but more research will be needed before it could be applied to humans for treatment.
Source: Eurekalert
Advertisement
|
Recommended Readings
Latest Cancer News




