About Careers Internship MedBlog Contact us

New Nanostructure Holds Big Promise for Cancer Nanotechnology

by Julia Samuel on March 15, 2016 at 6:56 PM
Font : A-A+

New Nanostructure Holds Big Promise for Cancer Nanotechnology

Nanotag, a new nanostructure developed at the University of Cincinnati showed significantly higher properties for use in technology that may allow doctors to see and destroy cancerous cells.

But the structure of the new SERS nanotag, as it's called, was so novel that the team -- led by Laura Sagle, an assistant professor of chemistry, with UC graduate students Debrina Jana, Jie He and Ian Bruzas -- was at a loss in understanding what generated the promising data or how to best optimize it.


"It was calculations that no one on campus had done before," explained Sagle, who serves as an advisor to Gorunmez. "Zohre, essentially by herself and without a lot of guidance and help, got these calculations up and running."

The discovery came in 2013 as part of the Sagle Lab research group's work in developing new methods to study and examine single molecules using a technique called surface-enhanced Raman spectroscopy, or SERS.

The technique targets molecules using lasers, which results in a scattering of light at different wavelengths along a spectrum. Because the molecules produce weak signals, gold or silver nanoparticles are used to amplify them, which is measured by a spectrometer for analysis.

The process is highly sensitive and fraught with challenges, including difficulties with reproducibility, signal stability and a lack of quantitative information.

The team looked to previous research, which showed greater enhancement from molecules residing within a one nanometer gap between a structure with a smooth metallic core and shell. But this one nanometer gap - 100,000 times smaller than the width of a human hair - is often difficult and expensive to produce, resulting in a lack of widespread use.

The team also took note of other popular research using gold nanostars, a starfruit-shaped particle that has allowed for greater enhancement, but is highly variable due to the difficult of controlling the number and size of the spiky tips. Inspired, the team decided to combine the two concepts and create a structure comprised of a smooth inner metallic core surrounded by a spiky metallic outer shell with a three nanometer spacing - an approach never before created, Sagle said.

The newly created nanotag produced 10 times greater signal enhancement compared to smooth-shell core structures, making it possible to detect minute amounts of organic molecules, such as DNA, for particular diseases, she said.

Not only that, the spiky structures are more efficient at generating heat, useful in destroying cancer cells, and offer an increased surface area that can accommodate more drugs in order to deliver a greater targeted blast to diseased cells, said Sagle.

"This allows you to target, image and release drugs all with one device," she explained.

While the discovery itself proved novel, Sagle knew that the team's promising nanotag needed to be further analyzed, understood and modeled before it could be used in biological applications.

Source: Eurekalert

News A-Z
What's New on Medindia
Alarming Cesarean Section Trends in India - Convenience or Compulsion of Corporate Healthcare
Quiz on Low-Calorie Diet for Diabetes
World Heart Day in 2022- Use Heart for Every Heart
View all
Recommended Reading
News Archive
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Cancer and Homeopathy Cancer Facts Cancer Tattoos A Body Art Common Lifestyle Habits that Cause Diseases Health Benefits of Dandelion Plant Immune Checkpoint Inhibitors for Cancer Treatment Non-Communicable Diseases 

Most Popular on Medindia

Hearing Loss Calculator The Essence of Yoga A-Z Drug Brands in India Accident and Trauma Care Drug Side Effects Calculator How to Reduce School Bag Weight - Simple Tips Diaphragmatic Hernia Noscaphene (Noscapine) Selfie Addiction Calculator Pregnancy Confirmation Calculator
This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use

New Nanostructure Holds Big Promise for Cancer Nanotechnology Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests