About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

New Molecular Chemotherapeutic Drug Targets Cancer Cells to Reduce Metastasis

by Preethi Sivaswaamy Mohana on February 26, 2018 at 11:55 AM
Font : A-A+

New Molecular Chemotherapeutic Drug Targets Cancer Cells to Reduce Metastasis

Chemotherapy drug paclitaxel can target and reduce the migrating cancer cells that are responsible for the development of tumor metastases, according to a study by a research team at the University of California, Riverside. The findings of the study are published in the Journal of Medicinal Chemistry.

Until now, paclitaxel has only been used to target rapidly dividing cancer cells. The team was successful in getting the drug to piggyback on 123B9, an agent they devised to target an oncogene called EphA2 (ephrin type-A receptor 2). EphA2 spreads cancer by allowing malignant cells to migrate from the primary tumor into circulation and eventually to adhere to other tissues.

Advertisement


"Once this novel tumor-homing agent binds to the EphA2 receptor, the oncogene functions as a cancer-specific molecular Trojan horse for paclitaxel, carrying the drug inside the cancel cell, killing the cell, and thwarting metastasis," said Maurizio Pellecchia, a professor of biomedical sciences at UCR's School of Medicine who led the research. "Without the targeting agent, paclitaxel cannot hitch a ride on EphA2."

Tumor metastasis is a leading cause of patient morbidity and mortality, and no treatments are currently available that specifically target metastasis formation. Cancer cells depend on a number of oncogenes, like EphA2, to form metastasis, the medical term for cancer spreading from the primary site to other regions in the body, accomplished when cancer cells break away from the primary site, travel through the blood or lymph system, and form new tumors elsewhere in the body.
Advertisement

Pellecchia and his colleagues found that when 123B9 binds to the extracellular region of the EphA2 receptor expressed in cancer cells, it causes the oncogene to internalize and degrade inside the cell, thus preventing cancer cells from entering circulation and metastasizing.

"Because this binding causes EphA2 internalization, we also sought to conjugate 123B9 with paclitaxel and thus direct the drug to migrating cancer cells," said Pellecchia, who holds the Daniel Hays Chair in Cancer Research at UCR.

Recent collaborative work between UCR and Cedars-Sinai Medical Center in Los Angeles demonstrated that in animal models of human breast cancer, mice treated with 123B9 that was conjugated with paclitaxel had significantly fewer circulating cancer cells in the blood compared to mice that were not treated or even treated with paclitaxel alone.

"Our work predicts that reducing the number of circulating cancer cells produces less metastasis," Pellecchia said. "Indeed, in a second tumor model of metastatic breast cancer, we demonstrated that mice treated with the EphA2-targeting paclitaxel conjugate presented nearly no lung metastases, while a large numbers of lesions were observed in both untreated mice and in mice treated with just paclitaxel."

Pellecchia said the road to a therapeutic for human trials is still long and includes the iterative design and synthesis of more potent and selective agents.

"Nonetheless, the proof of concept studies we have obtained thus far are extremely encouraging, and we are confident that with proper support and efforts we could translate our findings into experimental therapeutics for a variety of solid tumors that are driven by EphA2 overexpression, including breast, lung, prostate, pancreatic, and ovarian cancers," said Pellecchia, who serves as the founding director of the Center for Molecular and Translational Medicine at UCR.

He noted that while these studies solidify UCR's partnership with Cedars-Sinai Medical Center, the research team moving forward is expanding. Already, it includes UCR's Jikui Song, an assistant professor of biochemistry, and Dr. Samar Nahas, an assistant clinical professor of gynecology and oncology in the School of Medicine.



Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Drug News

 Parkinson's Unmet Needs Creates Path for New Entrants into the Market
Addressing the unmet needs of Parkinson's Disease by providing disease-modifying therapies could bring about a major shift in the way that patients are treated.
How Microrobots Could Help Treat Bladder Diseases?
Microrobots could swirl through a person's blood stream, search for targeted areas to treat for various ailments.
How Can Multivitamin Supplements Slow Cognitive Aging?
Supplementation with multivitamins is an inexpensive way for older adults to slow down memory loss.
 Ivosidenib Approved for Acute Myeloid Leukemia & Advanced Cholangiocarcinoma
Some people with an aggressive blood cancer called acute myeloid leukemia (AML) may soon have a new drug option called Ivosidenib that blocks the activity of IDH1 gene.
Sacubitril/valsartan Unleashes Hope for Heart Failure Patients
In case of cardiac failure where the ejection fraction is greater than 40%, sacubitril/valsartan can prove to be quite beneficial
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

New Molecular Chemotherapeutic Drug Targets Cancer Cells to Reduce Metastasis Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests