New Method for Drug Discovery Using Infrared Sensor

by Adeline Dorcas on  July 20, 2018 at 6:24 PM Research News
RSS Email Print This Page Comment bookmark
Font : A-A+

Infrared sensor can help scientists to analyze easily and quickly which active agents affect the protein structure and how long that effect lasts which may help develop new drugs with little side effects in a quick and targeted manner, according to a new study led by biophysicists at Ruhr-Universität Bochum (RUB). The findings of the study are published in the journal Angewandte Chemie.
New Method for Drug Discovery Using Infrared Sensor
New Method for Drug Discovery Using Infrared Sensor

Prof Dr. Klaus Gerwert and Dr. Jörn Güldenhaupt performed time-resolved measurements of the changes to the structure of protein scaffolds, which were triggered by the active agents. Their methods might one day help develop drugs with little side effects in a quick and targeted manner. The team published a report on their research, which was conducted under the umbrella of the EU-funded programme Innovative Medicines Initiative in the project Kinetics for drug discovery (K4DD).

Active Agents can Alter the Structure of Target Proteins

The efficacy of many drugs is based on the fact that they manipulate the metabolism of cells by inhibiting the activity of specific proteins. To this end, the drug molecule must bind to the respective target protein, while the active agent more often than not settles in the functional compartments of proteins, which are often hollow like a pouch.

In the case of some active agents, binding to the target protein additionally alters the structure of the protein surface. Following the so-called conformational change, new surface areas and binding pouches become accessible, and an active agent can be further adapted to match them. This process often results in a better selectivity of active agents, thus reducing side effects.

New Method Facilitates Rapid Measurements

"The way an active agent affects the structure of its target protein has so far been analyzed using time-consuming and material-intensive methods, which may provide extremely detailed spatial information, but which don't yield results until weeks or even months later," explains Jörn Güldenhaupt.

Developed by the researchers from Bochum, the new method provides information on structural changes within minutes, and it can even narrow down the type of structural change. The sensor is based on a crystal that is permeable for infrared light. The protein is bound on its surface. Infrared spectra are recorded through the crystal, while the surface is rinsed with solutions with or without any active agents. The sensor detects changes to the protein's spectral area that is structure-sensitive, i.e., the so-called amid region, which is characteristic for the scaffold of a protein. If any changes occur, it is obvious that the active agent has altered the shape of the protein.

Example: Heat Shock Protein

In collaboration with the company Merck, the team demonstrated the reliability of this method by analyzing the way two different active agent groups affected the heat shock protein HSP90. It is a folding helper that assists newly generated proteins in the cell to form the correct three-dimensional structure. Due to their extremely active metabolism, tumor cells require it very urgently. HSP90-inhibiting active agents constitute an approach for the development of drugs that stop tumor growth.

Binding Period Determines How often a Drug has to be Taken

The rate at which a drug molecule disengages from the target protein corresponds with the efficacy period of the drug in the body. Active agents with a high complex lifespan are bound to the target protein for a long time, thus remaining effective for a long time. Tablets containing such active agents have to be taken only once a day, for example, and often have fewer side effects. "Since our sensor acts as a flow system, we can rinse the active agents off the target protein after binding and, consequently, measure how the efficacy changes over time," explains Klaus Gerwert.

Source: Eurekalert

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions
Advertisement

Recommended Reading

More News on:

Drug Toxicity Clinical Trials Clinical Trials - The Past and The Future Clinical Trials - Different Phases of the trial Ultra-Violet Radiation Signature Drug Toxicity Drugs Banned in India 

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Find a Doctor

Stay Connected

  • Available on the Android Market
  • Available on the App Store

News Category

News Archive