New Method Aids Study of Promising Targeted Drug Delivery Scaffold

by Colleen Fleiss on April 15, 2018 at 10:46 PM
New Method Aids Study of Promising Targeted Drug Delivery Scaffold

Northwestern-UC Berkeley collaboration develops novel technique for studying self-assembling virus shell with potential for medical applications.

Viruses have shells that are built to survive in harsh conditions, protecting their cargo until they find a cell to infect. The shell can be used for good, however, because that stability makes it suitable for protecting more useful cargo, such as medications, that can be delivered to specifically-targeted cells. The research focused on a protein used by a bacterial virus called the MS2 bacteriophage. This protein can self-assemble, creating a harmless scaffolding out of the viral shell, said Danielle Tullman-Ercek, associate professor of chemical and biological engineering at the McCormick School of Engineering.


"In biology, everything has its place. Biology is great like that -- except we don't know the rules," Tullman-Ercek said. "Our discovery was the method for determining those design rules." The study, done in collaboration with chemistry professor Matthew Francis and his colleagues at the University of California at Berkeley, took more than two years. The results were published on April 11 in the journal Nature Communications.

The work allowed the researchers to examine which specific protein mutations broke the virus scaffold or changed the properties of the structure. To do that, the team developed a new technique called SyMAPS (Systematic Mutation and Assembled Particle Selection), which separated out the mutated scaffold proteins that remained intact from those that broke apart during mutation. In total, the team tested nearly 2,600 versions of the protein, which makes up the closed-shell, soccer-ball-like scaffold.

"The MS2 scaffold protein has 129 positions where we can make an substitutions, replacing the existing amino acid at that position with all other amino acids," said Emily Hartman, a fourth-year PhD candidate in chemistry at UC Berkeley and lead author on the paper. "By swapping all 20 naturally-occurring amino acids, one at a time, at every position in the protein, we end up testing 20 variables at 129 positions."

The team believes that understanding how mutations change the scaffolding provides important insight into how these repurposed virus proteins could be used in medicine. "The scaffold you want for drug delivery might be different than what you would want for a vaccine," Tullman-Ercek said. "We might want to change the properties of charge on the surface to get better targeting or add something to the inside of the structure, like loading it with a sensor or diagnostic recorder." For instance, a structure that falls apart in a specific environment could help targeted drug delivery, such as chemotherapy. "One of the things we did in the study was to look for mutants sensitive to acid," Hartman said. "The bloodstream isn't acidic, but once inside a cancer cell, it's a lot more acidic. If the scaffold falls apart in acidic environments, it would release the drug inside a cancer cell more easily."

A structure less tolerant to acidic conditions was found, and the team will continue work in this area. In addition, the study offers insight into what might naturally arise in a mutating virus, such as influenza. "This could give us an idea of which places in the virus could have a higher rate of mutation. That information could be used by scientists to develop new vaccines," Tullman-Ercek said. The team and their colleagues at both universities will use the work as the foundation of specific applications for the viral scaffold, she said. "This paper is really a first step in a larger set of stories," Hartman said. "There is a lot of ongoing work in this collaboration between the universities. I'm excited to see where it goes.

The study builds on Tullman-Ercek's earlier work, which found that a single amino acid mutation in the same MS2 bacteriophage scaffold drastically changed its size. Tullman-Ercek serves as a faculty member within Northwestern's Center for Synthetic Biology. The two-year-old center brings together scientists from engineering, medicine, physics, and computer science interested in manipulating biology to help society. Much of synthetic biology focuses on changing a cell by changing its DNA, creating new specialized products.

Source: Eurekalert
Font : A-A+



Recommended Readings

Latest Drug News

Prolonging Market Exclusivity of Brand-name Insulin
Examining FDA and patent records, researchers found that insulin manufacturers prolong market exclusivity for brand-name products.
FDA Boosts Orphan Drug Designations for Myelofibrosis Treatments
The rise in FDA ODD awards indicates a collective endeavor to create new myelofibrosis medications devoid of mechanisms inducing anemia.
Anti-Rheumatic Drugs May Help Prevent Thyroid Disease
The most significant decrease in autoimmune thyroid disease risk was observed in rheumatoid arthritis patients receiving immunomodulatory drugs or 'biological DMARDs'.
Apotransferrin's Potential in Early Stroke Therapy Revealed
Human apotransferrin injected to mice models suffering from intracerebral hemorrhage was found to mitigate the serious effects of stroke.
Anti-cancer Drug Navitoclax Help Treat Lower Back Pain
The reduction of these senescent osteoclasts, possibly through the utilization of current medications, could present a novel approach in managing lower back pain.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close

New Method Aids Study of Promising Targeted Drug Delivery Scaffold Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests