
A novel understanding of brain architecture using a network representation of connections within the primate cortex was proposed by a published in a special edition of the journal Science. Zoltán Toroczkai, professor of physics at the University of Notre Dame and co-director of the Interdisciplinary Center for Network Science and Applications, is a co-author of the paper "Cortical High-Density Counterstream Architectures."
Using brain-wide and consistent tracer data, the researchers describe the cortex as a network of connections with a "bow tie" structure characterized by a high-efficiency, dense core connecting with "wings" of feed-forward and feedback pathways to the rest of the cortex (periphery). The local circuits, reaching to within 2.5 millimeters and taking up more than 70 percent of all the connections in the macaque cortex, are integrated across areas with different functional modalities (somatosensory, motor, cognitive) with medium- to long-range projections.
The authors also report on a simple network model that incorporates the physical principle of entropic cost to long wiring and the spatial positioning of the functional areas in the cortex. They show that this model reproduces the properties of the connectivity data in the experiments, including the structure of the bow tie. The wings of the bow tie emerge from the counterstream organization of the feed-forward and feedback nature of the pathways. They also demonstrate that, contrary to previous beliefs, such high-density cortical graphs can achieve simultaneously strong connectivity (almost direct between any two areas), communication efficiency, and economy of connections (shown via optimizing total wire cost) via weight-distance correlations that are also consequences of this simple network model.
"Biological data is extremely complex and diverse," Toroczkai said. "However, as a physicist, I am interested in what is common or invariant in the data, because it may reveal a fundamental organizational principle behind a complex system. A minimal theory that incorporates such principle should reproduce the observations, if not in great detail, but in extent. I believe that with additional consistent data, as those obtained by the Kennedy team, the fundamental principles of massive information processing in brain neuronal networks are within reach."
Source: Eurekalert
Advertisement
|
Recommended Readings
Latest Research News




