About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

New Insights About Gender Differences in Airway Disease

by Anjali Aryamvally on April 8, 2018 at 7:42 PM
New Insights About Gender Differences in Airway Disease

Human airways demonstrate gender-based differences in DNA methylation patterns at birth, shows a new study. These methylation patterns provide an early hint of which infants may be predisposed to develop respiratory disorders like asthma later in life, shows study published in Scientific Reports.

It's clear that boys and young men are more likely to develop neonatal respiratory distress syndrome , bronchopulmonary dysplasia, viral bronchiolitis, pneumonia, croup and childhood asthma. Unlike boys, girls have an additional copy of the X chromosome, which is enriched with immune-related genes, some of which play key roles in the development of respiratory conditions. Methylation prevents excessive gene activity in X-linked genes, however much remains unknown about how this process influences infants' risk of developing airway diseases.

Advertisement


A multi-institution research team that includes Children's National Health System attempted to characterize gender-based epigenomic signatures in the human airway early in children's lives with a special attention to defining DNA methylation patterns of the X chromosome.

"It's clear as we round in the neonatal intensive care unit that baby boys remain hospitalized longer than girls and that respiratory ailments are quite common. Our work provides new insights about gender differences in airway disease risk that are pre-determined by genetics," says Gustavo Nino, M.D., a Children's pulmonologist and the study's senior author.
Advertisement

"Characterizing early airway methylation signatures holds the promise of clarifying the nature of gender-based disparities in respiratory disorders and could usher in more personalized diagnostic and therapeutic approaches."

The research team enrolled 12 newborns and infants in the study and obtained their nasal wash samples. Six of the infants were born preterm, and six were born full term. The researchers developed a robust gender classification algorithm to generate DNA methylation signals. The machine learning algorithm identified X-linked genes with significant differences in methylation patterns in boys, compared with girls.

As a comparison group, they retrieved pediatric nasal airway epithelial cultures from a study that looked at genomic DNA methylation patterns and gene expression in 36 children with persistent atopic asthma compared with 36 heathy children.

The team went on to classify X-linked genes that had significant gender-based X methylation and those genes whose X methylation was variable.

"These results confirm that the X chromosome contains crucial information about gender-related genetic differences in different airway tissues," Dr. Nino says. "More detailed knowledge of the genetic basis for gender differences in the respiratory system may help to predict, prevent and treat respiratory disorders that can affect patients over their entire lifetimes."



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Latest Research News

Brain Circuits That Shape Bedtime Rituals in Mice
New study sheds light on the intrinsic, yet often overlooked, role of sleep preparation as a hardwired survival strategy.
NELL-1 Protein Aids to Reduce Bone Loss in Astronauts
Microgravity-induced bone loss in space, can be reduced by systemic delivery of NELL-1, a protein required for bone growth and its maintenance.
Connecting Genetic Variants to the Alzheimer's Puzzle
Researchers establish connections between Alzheimer's-linked genetic alterations and the functioning of brain cells.
Gene Therapy Sparks Spinal Cord Regeneration
Team at NeuroRestore introduces a groundbreaking gene therapy that has effectively promoted nerve regrowth and reconnection, post spinal cord injury.
Unlocking the Gut Microbiome's Influence on Bone Density
Scientists aim to pinpoint particular functional pathways affected by these bacteria that may have an impact on skeletal health.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

New Insights About Gender Differences in Airway Disease Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests