A new potential immunotherapy of malignant brain tumors has been uncovered by scientists. The molecule that suppresses the cancer-fighting activity of immune T cells.

‘Scientists have identified is a molecule that suppresses the cancer-fighting activity of immune T cells, the white blood cells that seek out and destroy virus-infected cells and tumor cells.’

In addition, "we showed that this pathway is also relevant in a number of other major human cancer types," including melanoma, lung, colon, and liver cancer, said Kai Wucherpfennig, MD, PhD, director of the Center for Cancer Immunotherapy Research at Dana-Farber. He is corresponding author of the report along with Mario Suva, MD, PhD, of Massachusetts General Hospital; Aviv Regev, PhD, of the Broad Institute, and David Reardon, MD, clinical director of the Center for Neuro-Oncology at Dana-Farber. 




Many cancer patients are now being treated with immunotherapy drugs that disable "immune checkpoints" - molecular brakes exploited by cancer cells to suppress the body's defensive response by T cells against tumors. Disabling these checkpoints unleashes the immune system to attack cancer cells. One of the most frequently targeted checkpoints is PD-1.
However, recent trials of drugs that target PD-1 in glioblastomas have failed to benefit patients. In the current study, the researchers found that fewer T cells from gliomas contained PD-1 than CD161. As a result, they said, "CD161 may represent an attractive target, as it is a cell surface molecule expressed by both CD8 and CD4 T cell subsets [the two types of T cells involved in response against tumor cells] and a larger fraction of T cells express CD161 than the PD-1 protein."
Prior to the current study, the researchers said little was known about the expression of genes and the molecular circuits of immune T cells that infiltrate glioma tumors, but fail to halt their growth. To open a window on these T cell circuits, the investigators took advantage of new technologies for reading out the genetic information in single cells - a method called single-cell RNA-seq.
They applied RNA-seq to glioma-infiltrating T cells from fresh tumor samples from 31 patients and created an "atlas" of pathways that regulate T cell function. In analyzing the RNA-seq data, the researchers identified the CD161 protein, encoded by the KLRB1 gene, as a potential inhibitory receptor. They then used CRISPR/Cas9 gene-editing technology to inactivate the KLRB1 gene in T cells and showed that CD161 inhibits the tumor cell-killing function of T cells. "Our comprehensive atlas of T cell expression programs across the major classes of diffuse gliomas thus identifies the CD161-CLEC2D pathway as a potential target for immunotherapy of diffuse gliomas and other human cancers," the authors of the report said.
Advertisement
The scientists subsequently injected T cells with the KLRB1 gene edited out into the cerebrospinal fluid of some of the animals, and T cells that hadn't had the KLRB1 gene deleted. Transfer of the gene-edited T cells slowed the growth of the tumors and "conferred a significant survival benefit," in both of the animal models of gliomas, the scientists said.