About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

New Gene-editing Method Could Produce Identical Stem Cell Twins

by Rishika Gupta on March 5, 2018 at 5:53 PM
Font : A-A+

 New Gene-editing Method Could Produce Identical Stem Cell Twins

The new gene-editing method can produce stem cell twins with absolute precision. It is considered to be unique as it can guide the cell's own repair mechanisms to provide a pair of genetically matched cells for studying disease-related mutations, finds a new study. The findings of this study are published in the Journal of Nature Communications.

Single mutations in DNA, known as single nucleotide polymorphisms -- or SNPs for short -- are the most common type of variation in the human genome. More than 10 million SNPs are known, many of which are associated with ailments such as Alzheimer's, heart disease, and diabetes.

Advertisement


In order to understand the role of SNPs in hereditary disease, scientists at Kyoto University's Center for iPS cell Research and Application (CiRA) create induced pluripotent stem cells from patient donors.

iPS cells retain the genetic makeup of the donor and can be converted into any cell type in the body. In this way, cells from tissues such as the brain, heart, or pancreas can be created and observed in the laboratory, enabling safe testing for new disease treatments before starting clinical trials.
Advertisement

Proving that an SNP causes disease requires very strict comparisons to genetically matched, or isogenic, iPS cells. The ideal cells are what the researchers describe as isogenic "twins"; cells whose genomes differ only by one SNP.

However, Dr. Shin-Il Kim, a Specially-appointed Assistant Professor in the Woltjen lab and co-first author on the study, says that creating these twins is not trivial.

"Usually we need to add a gene for antibiotic resistance along with the SNP to overcome low efficiency. Since that adds another change to the genome, we also need a way to remove it."

To create isogenic twins, the Woltjen laboratory has developed new genome editing technology that inserts an SNP modification along with a fluorescent reporter gene, which acts as a signal to detect modified cells.

They also engineered a short duplicated DNA sequence, known as a microhomology, on the left and right sides of the reporter gene, and unique target sites for CRISPR, an enzyme that cuts DNA.

These features allowed the researchers to exploit an endogenous DNA repair system in the cell called microhomology-mediated end joining (MMEJ) in order to precisely remove the reporter gene. MMEJ removes the fluorescent reporter gene, leaving only the modified SNP behind. By arranging the mutant SNP in one microhomology and the normal SNP in the other, the method efficiently generates isogenic twins.

CiRA Associate Professor Dr. Knut Woltjen, called the new gene editing method MhAX, or Microhomology-Assisted eXcision. Woltjen's inspiration came from observing naturally occurring MMEJ repair in response to DNA damage.

"To make MhAX work, we duplicate DNA sequences which are already present in the genome. We then let the cells resolve this duplication. At the same time, the cells decide which SNPs will remain after repair," he says. "One experiment results in the full spectrum of possible SNP genotypes."

In collaboration with Dr. Takashi Yamamoto at Hiroshima University and Dr. Tomoyoshi Soga of Keio University, the Woltjen lab used MhAX to create SNPs in the HPRT and APRT genes, mutations that are associated with gout and kidney disease, respectively.

Biochemical analyses showed cells with the HPRT mutant SNP had an altered metabolism similar to patients, while the isogenic twin control cells, derived in the same experiment, were normal. The APRT*J mutation, often found in a population of Japanese patients with acute kidney failure, demonstrated the high efficiency of MhAX, as both gene copies (one from the mother and one from the father) required gene editing to study the mutation's effects.

Woltjen's lab has already begun applying their method to the creation and correction of SNPs in genes associated with other diseases. Collaborating with researchers in Japan and Canada, they are investigating the genetic cause of severe diabetes in juvenile patients.

Diabetes clinical trials using embryonic stem cells are currently underway, but chronic immune suppression is required. Gene correction of the patient's own iPS cells could lead to a source of healthy insulin-producing pancreatic cells with a reduced chance of rejection following transplantation.

"Our goal is to generate gene editing technologies which improve our understanding of disease mechanisms, and ultimately lead to therapies," said Woltjen, "We're confident that MhAX will have broad applicability in current human disease research, and beyond."



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Memory Loss - Can it be Recovered?
International Day of Persons with Disabilities 2021 - Fighting for Rights in the Post-COVID Era
Effect of Blood Group Type on COVID-19 Risk and Severity
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Stem Cells - Cord Blood Stem Cells - Fundamentals Parkinsons Disease Surgical Treatment Genetics and Stem Cells Bone Marrow Transplantation Tissue Engineering and Regenerative Medicine Stem Cells Multiple Pregnancy Stem Cell Therapy 

Recommended Reading
Gene Editing to Make T-cells More Efficient in Attacking Cancer Cells
CRISPR genome editing enhances immune system's T-cells for cancer immunotherapy, says study....
Gene Editing Technique Offers Precised Blindness Therapy by Repairing Stem Cells
CRISPR/Cas9 has been heralded as a major breakthrough in genetic engineering to precisely make ......
Gene Editing System Helps Grow Colon Tumors For Research
CRISPR uses a DNA-cutting enzyme and short RNA guide strands that target specific sequences of the ....
Bone Marrow Transplantation
Preferred Term is Hematopoietic stem cell transplantation. In this stem cell from bone marrow are in...
Multiple Pregnancy
Multiple Pregnancy or multiple births refers to the condition where a woman delivers twins or multip...
Stem Cell Therapy
Stem cell therapy or regenerative medicine uses undifferentiated cells for the treatment of conditio...
Stem Cells - Fundamentals
Encyclopedia section of medindia gives general info about Stem Cells...
Stem Cells - Cord Blood
Encyclopedia section of medindia gives general info about Cord Blood...
Tissue Engineering and Regenerative Medicine
This new field is an amalgamation of biology, medicine and engineering, and is believed to have mind...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use