About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

New Equipment Can Measure Fatal Blows To The Chest

by Rishika Gupta on February 23, 2019 at 5:49 PM
Font : A-A+

 New Equipment Can Measure Fatal Blows To The Chest

Exact nature of a fatal blow to the chest could not be previously measured and so the researchers from PFL's Soft Transducers Laboratory and at the Department of Physiology of the University of Bern (Group Rohr) have created an experimental device which can be used to deliver high strain such as experienced during a fatal blow to the heart tissue.

A blow to the chest can have highly contrasting effects. For instance, some baseball players have died after being hit in the chest by a baseball, while patients undergoing fatal cardiac tachyarrhythmias have been saved by an appropriately timed thump to the chest.

Advertisement


Scientists know that such blows create rapid strains on heart tissue, but they still don't fully understand how the blows affect cardiac functioning. Researchers at EPFL's Soft Transducers Laboratory and at the Department of Physiology of the University of Bern (Group Rohr) have developed an experimental device that lets scientists subject bioengineered heart tissue to highly dynamic strain cycles and measure its electrophysiological response. Their work has just been published in Nature Communications.

The normal heartbeat is the result of an electromechanical coupling process. More specifically, electrical impulses invade the entire heart and "order" the heart muscle to contract. With each contraction, blood is ejected from the heart thereby ensuring stable circulation. "This coupling is essential because that's what makes our hearts beat at a regular pace," says Matthias Imboden, a co-author of the study and EPFL post-doc, who performed part of his research at the Department of Physiology.
Advertisement

Until recently, scientists believed that the potentially fatal effects of a blow to the chest, or on the contrary, the rescue of patients in cardiac arrest by an appropriately timed thump to the chest, were the result of the strains that interfere with the transmission of electrical impulses, thereby disrupting the heartbeat. But no laboratory systems previously existed to test that hypothesis. "We did have methods for reproducing cellular strain, but they created the strain too slowly to truly replicate what happens during a blow," says Stephan Rohr, a co-author of the study and University of Bern professor.

Replicating blow effects in the laboratory

The researchers' experimental device can subject cardiac tissue to strain patterns that closely mimic realistic chest impacts. It consists of stretchable, extremely thin gold and carbon electrodes deposited on a silicone membrane. "The carbon electrodes create the strain in the cardiac tissue, and the gold ones measure the cellular electrophysiological response," says Herbert Shea, head of the Soft Transducers Laboratory and a professor at the EPFL's School of Engineering. The researchers tested their system on bioengineered strands of rat cardiac cells, which were placed on top of the electrodes and subjected to different strains patterns.

Much faster strains

The device can generate cellular strains in the order of 10-12%, which is consistent with what occurs during a normal heartbeat. However, it generates that strain up to 100 times faster than what the heart encounters during normal function, just like what happens during a blow to the chest. The researchers' device is motorless and is the only one to closely replicate the dynamics of blows to the chest, while simultaneously permitting the measurement of strain effects on the electrophysiology of the cardiac tissue.

Findings that lead in new directions

The researchers found that contrary to what other studies had concluded, even very rapid strains do not affect the propagation of electrical impulses. "That means we need to look into other possible explanations of what exactly happens during a deadly blow to the chest," says Rohr. "The strain sensitive element in the heart may actually not be the contracting heart cell itself but adjacent connective tissue cells." Their device also paves the way to further research, such as the effect of specific drugs or gene therapies having beneficial effects on mechano-electrical coupling in the heart.

Source: Eurekalert
Advertisement

Advertisement
Advertisement

Latest Medical Gadgets

New Dialysis Device Effectively Treats Severe Liver Failure
A new dialysis device developed by researchers to treat individuals with severe liver failure is safe and effective.
Tiny Video Capsule: A New Hope for Endoscopy
The magnetically controlled capsule endoscopy shows promising results in treating issues related to stomach.
Affordable Smartphone Attachment Enables Convenient Blood Pressure Monitoring
Scientists have developed an affordable, user-friendly clip that utilizes a smartphone's camera and flash to measure blood pressure at the user's fingertip.
 Developing Wireless Patch System to Detect Sleep Apnea at Home
Recent progress in the development of wearable devices has presented alternative ways for sleep monitoring at home, which could be useful in sleep apnea detection.
Non-Invasive Brain Imaging: A Tool to Help Paralysis Patients
Researchers develop non-invasive brain imaging techniques to help people with disabilities.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

New Equipment Can Measure Fatal Blows To The Chest Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests