About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Neurotransmitter Plays No Role in Pain Transmission

by Bidita Debnath on October 4, 2017 at 11:52 PM
 Neurotransmitter Plays No Role in Pain Transmission

Neurotransmitters are responsible for causing the itching impulses in the brain. North Carolina State University researchers show that a neurotransmitter involved in relaying itching sensations from the skin to the spinal cord and into the brain plays no role in pain transmission.

"For us, it's very important to understand the neural circuits or pathways so that we can develop therapies specifically for pain or itch, instead of targeting it as a whole system," says Santosh Mishra, assistant professor of neuroscience in NC State's College of Veterinary Medicine and the corresponding author of a paper on the topic. "This work shines a light on these different pathways for pain and itch."

Advertisement


Mishra's team focused on a neurotransmitter called brain natriuretic peptide (BNP), which is expressed in a small number of sensory nerve cells or neurons. Mishra's previous work at the National Institutes of Health established that, in mice, BNP is involved in transmitting itching sensations from the skin to the brain.

For this study, researchers looked at whether BNP played a role in transmitting acute, inflammatory or neuropathic pain in mice. Results were the same for regular mice and those that lacked the BNP gene. "That means BNP was not involved for any of these distinct types of pain," Mishra says. "We know that if we target BNP, we won't be inhibiting pain; we'll be inhibiting itch." When a nerve cell on the surface of the body reacts to a stimulus, pain or itching sensations begin.
Advertisement

"Neurons react to a stimulus by depolarizing, which is how the cells talk to each other," Mishra says. "Once it's depolarized, a neuron releases a neurotransmitter, which starts the communication from one cell to another, moving from the periphery of the body to the central nervous system."

The neural pathway takes the message to the spinal cord, which is connected to the brain. The brain interprets the signals from the nerves, creating the sensations of pain and itching.

"If we know how these sensations are transmitted, we can design specific drugs or therapies to block the neurotransmitters, block the receptors for the neurotransmitters or reduce the degree to which those neurotransmitters work," Mishra says. "I call these the gatekeepers because they are sitting in between the skin and the central nervous system."

The goal is to develop treatments that interrupt the pain or itch signals closer to the source.

"If we can block the sensation at the peripheral level, in the skin, that is a much friendlier way than to try to target the sensation once it reaches the brain," Mishra says. "We know the importance of pain management. Studying itching sensations is a relatively new field, but if we look at the number of diseases where itch is a major symptom, it includes not only atopic dermatitis but also nervous system disorders such as multiple sclerosis, as well as infection and end stage kidney disease. This work is an initial step in gaining a better understanding."

Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

Insight into Cellular Stress: Mechanisms Behind MRNA Sequestration Revealed
The discovery deepens our understanding of m6A biology and stress granule formation, with implications for neurodegenerative diseases.
Disrupted Circadian Rhythm Elevates the Risk of Parkinson's Disease
Trouble with sleep and the body's clock may increase your risk for Parkinson's, as per a new study.
A Wake-Up Call for Women  Hot Flashes Could Point to Alzheimer's Risk
New study uncovers a link between nocturnal hot flashes and Alzheimer's risk in menopausal women, suggesting a potential biomarker.
Breakthrough Brain-Centered Approach Reduces Chronic Back Pain
Our discovery revealed that a minority of individuals attributed their chronic pain to their brain's involvement.
New Statement to Protect Athletes' Health Published
Relative Energy Deficiency in Sport syndrome is overlooked by athletes and can be worsened by 'sports culture' due to its perceived short-term performance benefits.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Neurotransmitter Plays No Role in Pain Transmission Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests