Medindia LOGIN REGISTER
Medindia
Advertisement

Neuroscientists Identify Neural Stopwatch in the Brain

by VR Sreeraman on October 21, 2009 at 5:09 PM
 Neuroscientists Identify Neural Stopwatch in the Brain

What's New: MIT researchers have identified populations of neurons that code time with extreme precision in the primate brain. These neurons are found in two interconnected brain regions, the prefrontal cortex and the striatum, both of which are known to play critical roles in learning, movement, and thought control.

Why it matters: The timing of individual actions, whether we are speaking, driving a car, or playing the piano, require very precise control. Although our daily life is extremely dependent on this remarkable capability, surprisingly little has been known about how time is represented in the activity of brain cells. The discovery made by MIT neuroscientists is an important step toward answering this fundamental question.

Advertisement

How they did it: The team of researchers, led by Institute Professor Ann Graybiel, a member of the McGovern Institute for Brain Research and the Department of Brain and Cognitive Sciences, trained two macaque monkeys to perform a simple eye-movement task. After receiving a "go" signal, the monkeys were free to perform the task at their own speed. The researchers found that neurons in the prefrontal cortex and the striatum that consistently fired at specific times — 100 milliseconds, 110 msec, 150 msec, and so on — after the "go" signal. Like a stopwatch, these neurons provided a fine-scale coverage over a period of several seconds. The combined activity of these neurons provided "time stamps" that could specify any given time point with a remarkable precision of less than 50 milliseconds, more than sufficient to account for most behaviors.

Next steps: The discovery opens the door to many questions. How does the brain produce this time code, and how is it used to control behavior and learning? In the longer term, the ability to read the brain's natural time-code may facilitate the development of neural prosthetic devices for conditions such as Parkinson's disease, in which neurons in the prefrontal cortex and basal ganglia are disrupted and the ability to control the timing of movements is impaired.

Source: Eurekalert
SRM
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

Life Expectancy Gap for Autistic Individuals Revealed
Diagnosed autistic individuals showed increased premature mortality in the UK, highlighting urgent needs to address associated inequalities.
Exploring How Hearing Impairment Shapes Dementia Risk
Study reveals a correlation between hearing impairment and distinct brain region variances, contributing to dementia.
Coffee and its Role in Neurodegenerative Disorders
Financial impact of caring for individuals with neurodegenerative disorders reaches hundreds of billions annually in the United States.
Healthcare Industry Struggles With Tech Skills Shortage
Experts emphasize that addressing the skills gap demands immediate attention and innovative solutions, including education, re-training, and significant time investment.
Nano-Probes Uncover Cellular Reactions to Pressure
New study unveiled the cells' ability to adapt in responses and potential implications for conditions such as diabetes and cancer.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Neuroscientists Identify Neural Stopwatch in the Brain Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests