About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Neurons Reshape Inside Body Fat to Boost Its Calorie-burning Capacity

by Colleen Fleiss on July 24, 2020 at 12:46 AM
Neurons Reshape Inside Body Fat to Boost Its Calorie-burning Capacity

In the absence of leptin, a normally bushy network of neural fibers within fat tissue shrinks and grows back when the hormone is given as a drug. These changes were shown to influence the animals' ability to burn the energy stored in fat. The findings of the study are published in the journal Nature.

There's no doubt that you can lose fat by eating less or moving more--yet after decades of research, the biology underlying this equation remains mysterious. What really ignites the breakdown of stored fat molecules are nerves embedded in the fat tissue, and a new study now reveals that these fat-burning neurons have previously unrecognized powers. If they receive the right signal, they have an astonishing capacity to grow.

Advertisement


"While the architecture of the nervous system can change significantly as a young animal develops, we did not expect to find this profound level of neural plasticity in an adult," says . Jeffrey M. Friedman, a molecular geneticist at The Rockefeller University.

Homing in on neurons in fat

The team began by looking at what happens to mice who do not produce leptin on their own, and how they respond when treated with it.
Advertisement

Discovered in Friedman's lab in 1994, the hormone relays signals between fat deposits and the brain, allowing the nervous system to curb appetite and boost energy expenditure to regulate body weight. When mice are genetically engineered to stop producing leptin, they grow three times heavier than normal mice. They eat more, move less, and cannot survive in what should be tolerable cold because their body can't properly utilize fat to generate heat.

Give these mice a dose of leptin, however, and they quickly begin to eat less and move more. But when the researchers treated them longer, for two weeks, more profound changes occurred: the animals started to break down white fat, which stores unused calories, at normal levels, and regained the ability to use another form of fat tissue, brown fat, to generate heat.

It was this slower change that interested the research team, including the first authors of the Nature paper, Putianqi Wang, a graduate student in the lab, and Ken H. Loh, a postdoctoral fellow. They suspected that changes in neurons outside the brain--those that extend into fat--might explain why this part of the response to leptin took some time.

To the brain and back

Using an imaging technique developed by the lab of Rockefeller's Paul Cohen to visualize nerves inside fat, the researchers traced leptin's effects on the fat-embedded neurons up to the brain's hypothalamus region. From here, they found, leptin's growth-promoting message travels via the spinal cord back to the neurons in fat. "This work provides the first example of how leptin can regulate the presence of neurons in fat, both white and brown," adds Cohen.

Through this pathway, fat appears to be telling the brain how much innervation it needs to function properly. "Fat is indirectly controlling its own innervation and thus function," Friedman says. "It is an exquisite feedback loop."

Future research will analyze the role of this pathway in human obesity and possibly provide a novel approach for therapy. Most obese people produce high levels of leptin, and show a diminished response to hormone injections, suggesting that their brain is resistant to the hormone. Thus, bypassing leptin resistance could have a therapeutic benefit for these patients.

"In the new study we see that similar to animals lacking leptin, obese, leptin-resistant animals also show reduced fat innervation," Friedman says. "So we speculate that directly activating the nerves that innervate fat and restoring a normal ability to use stored fat could provide a possible new avenue for treating obesity.

Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Obesity News

Pathbreaking Anti-Obesity Drug KDS2010 Helps Burn Fat Without Diet Restrictions
KDS2010 drug was found to regulate astrocytes in brain which enhances fat metabolism resulting in weight loss without the need for dietary restrictions.
Inflammation Impacts Weight Loss Post Bariatric Surgery
In obese patients undergoing weight-loss surgery, higher blood levels of inflammation are associated with poor weight loss post-surgery.
Coconut Oil Supplements Linked to Fuel Obesity
Coconut oil supplements over a long period of time may have a major impact on the metabolic changes in diet that can lead to obesity.
Anti-Obesity Drug Liraglutide Enhances Associative Learning
Intake of anti-obesity drug liraglutide, resulted in better brain activity and in-turn finer associative learning in obese individuals.
Nature's Anti-obesity Secret from China
Anti-obesity potential of a tropical plant emerges as a promising solution to address the global surge in obesity-related lifestyle diseases.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Neurons Reshape Inside Body Fat to Boost Its Calorie-burning Capacity Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests