About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Neuron’s Control on Movement Mapped in Nematodes

by Anjali Aryamvally on October 29, 2017 at 12:28 PM
Neuron’s Control on Movement Mapped in Nematodes

The human brain is a mysterious supercomputer yet to be fully decoded. It controls every thought, feeling and movement using an intricate network of neurons. But we've only just begun to understand how it all works.

To conquer the puzzle of the human mind, researchers at Northeastern's Center for Complex Network Research start with simpler models. The brain of a nematode worm, for example, has about 300 neurons and 2,200 synapses.

Advertisement


Using the nematode as one test system, scientists at CCNR have spent the past several years understanding how a network controls itself--for instance, which individual neurons in the worm's brain are in charge of a backward wiggle. And in the research published in Nature, they describe for the first time their ability to predict, test, and confirm with unprecedented detail how a nematode's brain controls the way it moves.

"I am delighted to have the first direct experimental confirmation of the control principles," said Albert-László Barabási, Robert Gray Dodge Professor of Network Science and University Distinguished Professor of Physics, and director of the Center for Complex Network Research. "And I'm equally excited that it offered us a way to systematically predict, with exceptional accuracy, the neurons that are involved in specific processes."
Advertisement

Researchers in Barabási's lab studied the nematode brain, which has been mapped neuron by neuron, synapse by synapse. They developed a theory to predict precisely what neurons would control specific types of locomotion--the worm's ability to squirm and scoot around. Then, colleagues from the Medical Research Council Laboratory of Molecular Biology in Cambridge, England, tested the predictions by killing individual neurons from the nematode brain with a laser. They then measured the effects of these "microsurgeries" on behavior.

"Remarkably, the predictions were confirmed, supporting the theory and providing new insight into how individual neurons control body movements," said William Schafer, a scientist at the MRC lab who led the laser experiments.

This is an important first step toward what Emma Towlson, a postdoctoral researcher at CCNR and one of the study's lead authors, calls "the dream." One day, researchers may be able to translate a version of the nematode control model to the human brain. This would be life-changing for patients with cerebral palsy, Lou Gehrig's disease, and other ailments that lead to loss of muscle function.

"We could, in theory, turn something that is uncontrollable into something that is controllable. This is the ultimate ambition, but there is a huge leap in the middle," Towlson said.

To make sense of the nematode brain, Towlson created a map of the connections between neurons and muscles. She was surprised by the relative simplicity of the model, composed of ones and zeros that indicated whether or not there was a connection. Researchers also made a number of assumptions with regard to the biological parameters.

"And it still comes out with this level of prediction," Towlson said. "That amazes me. In my mind, that says we're really getting at something fundamental."

Moving forward, Towlson would like to examine the nematode brain network in more detail. She knows which neurons control which muscles and their corresponding movements. But how much energy and time does one wiggle take compared to another, and does that explain why the worms move in the ways they do?

Towlson also wants to apply the control principles to other models.

"I think the next sensible steps for us are zebra fish, maybe mouse, and then human," Towlson said. "The human brain is always the ultimate dream."



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Latest Research News

Brain Circuits That Shape Bedtime Rituals in Mice
New study sheds light on the intrinsic, yet often overlooked, role of sleep preparation as a hardwired survival strategy.
NELL-1 Protein Aids to Reduce Bone Loss in Astronauts
Microgravity-induced bone loss in space, can be reduced by systemic delivery of NELL-1, a protein required for bone growth and its maintenance.
Connecting Genetic Variants to the Alzheimer's Puzzle
Researchers establish connections between Alzheimer's-linked genetic alterations and the functioning of brain cells.
Gene Therapy Sparks Spinal Cord Regeneration
Team at NeuroRestore introduces a groundbreaking gene therapy that has effectively promoted nerve regrowth and reconnection, post spinal cord injury.
Unlocking the Gut Microbiome's Influence on Bone Density
Scientists aim to pinpoint particular functional pathways affected by these bacteria that may have an impact on skeletal health.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Neuron’s Control on Movement Mapped in Nematodes Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests