Heat-reduction strategies in cities were found to vary depending on the regional climate, revealed scientists at ETH Zurich.
Heat-reduction strategies in cities were found to vary depending on the regional climate, revealed scientists at ETH Zurich. "We already know that plants create a more pleasant environment in a city, but we wanted to quantify how many green spaces are actually needed to produce a significant cooling effect," says Gabriele Manoli, former postdoc with the Chair of Hydrology and Water Resources Management at ETH Zurich and lead author of the recently published article in the journal Nature.
‘Urban heat islands are a phenomenon where the temperature in a city is noticeably higher than in the surrounding rural area. ’
More green spaces: not always the most efficient solution Manoli and his colleagues from ETH Zurich, Princeton University and Duke University studied data from some 30,000 cities worldwide and their surrounding environment, taking into consideration the average summer temperature, the population size and the annual rainfall. The urban heat island phenomenon is more pronounced the bigger the city and the more rainfall in that region. As a general rule, more rain encourages plant growth in the surrounding area, making this cooler than the city. This effect is the strongest when annual rainfall averages around 1500 millimetres as in Tokyo, but does not increase further with more rain.
Two climate extremes illustrate well the role of vegetation on the urban heat island phenomenon: very dry regions on the one hand, and tropical areas on the other. Through carefully targeted planting, a city like Phoenix in the USA could achieve cooler temperatures than the surrounding countryside, where conditions are almost desert-like. By comparison, a city surrounded by tropical forests, such as Singapore, would need far more green spaces to reduce temperatures, but this would also create more humidity. In cities located in tropical zones, other cooling methods are therefore expected to be more effective, such as increased wind circulation, more use of shade and new heat-dispersing materials. "There is no single solution," Manoli says. "It all depends on the surrounding environment and regional climate characteristics."
Useful information for city planners
Manoli explains that the main benefit of the study is a preliminary classification of cities, in the form of a clear visualisation guiding planners on possible approaches to mitigate the urban heat island effect. "Even so, searching for solutions to reduce temperatures in specific cities will require additional analysis and in-depth understanding of the microclimate," he stresses. "Such information, however, is based on data and models available to city planners and decision-makers only in a handful of cities, such as Zurich, Singapore or London."
Advertisement
Source-Eurekalert