About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Nanotechnology Uses Bacteria for Drug Delivery

by Chrisy Ngilneii on January 2, 2018 at 4:35 PM
Font : A-A+

Nanotechnology Uses Bacteria for Drug Delivery

By using bacterial flagella as a template for silica, a research team at the American Institute of Physics demonstrated an easier way to make propulsion systems for nanoscale swimming robots that can deliver drugs to specific locations in the body.

A feature of science fiction stories for decades, nanorobot potential ranges from cancer diagnosis and drug delivery to tissue repair and more. A major hurdle to these endeavors, however, is finding a way to cheaply make a propulsion system for these devices. New developments may now propel nanoswimmers from science fiction to reality thanks to unexpected help from bacteria.

Advertisement


An international research team has demonstrated a new technique for plating silica onto flagella, the helix-shaped tails found on many bacteria, to produce nanoscale swimming robots. The group's biotemplated nanoswimmers spin their flagella, thanks to rotating magnetic fields, and can perform nearly as well as living bacteria.

"We have shown for the first time the ability to use bacterial flagella as a template for building inorganic helices," said MinJun Kim, professor of mechanical engineering, Lyle School of Engineering at Southern Methodist University and one of the authors of the paper. "This is quite a transformative idea and will have a great impact on not only medicine but also other fields."
Advertisement

Compared to larger forms of aquatic motion, nanoswimming hinges on an understanding of the Reynolds number, the dimensionless quantities that relates fluid velocity, viscosity and the size of objects in the fluid. With a Reynolds number of one-millionth our own, bacteria must use nonreciprocal motion in the near absence of inertial forces. Using helical tails made of a protein called flagellin, many species of bacteria navigate these microscopic conditions with relative ease.

"If we were shrunk down to the size of a bacteria, we would not be able to use the breast stroke to move through water," Kim said. "If bacteria were the size of us, they could swim 100 meters in about two seconds."

Other recently developed methods for constructing these helical structures employ complicated top-down approaches, including techniques that involve self-scrolling nanobelts or lasers. The use of this specialized equipment can lead to very high startup costs for building nanorobots.

Instead, Kim's team used a bottom-up approach, first culturing a strain of Salmonella typhimurium and removing the flagella. They then used alkaline solutions to fix the flagella into their desired shape and pitch, at which point they plated the proteins with silica. After that, nickel was deposited on the silica templates, allowing them to be controlled by magnetic fields.

"One challenge was to make sure we had helices with the same chirality. If you rotate a left-handed helix and a right-handed helix the same way, they will go in different directions," Kim said.

The team took their nanorobots for a spin. When exposed to a magnetic field, the nanorobots kept up the pace with their bacterial counterparts and were projected to be able to cover 22 micrometers, more than four times their length, in a second. In addition to this, the team was able to steer the nanoswimmers into figure-eight paths.

While Kim said he sees a potential for nonconducting nanoscale helices in the area of targeted cancer therapeutics, he added that with his team's work, one might plate conductive materials to flagella and produce helical materials for electronics and photonics.

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
Health Benefits of Sea Buckthorn
Contraceptive Pills in Polycystic Ovary Syndrome (PCOS) Curtail Type 2 Diabetes Risk
Mushroom May Help Cut Down the Odds of Developing Depression
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Drug Toxicity Shigellosis Signature Drug Toxicity MRSA - The Super Bug Drugs Banned in India Food Safety for Health Antibiotics Nanotechnology Drug Delivery System Use of Nanotechnology in Healthcare 

Recommended Reading
Use of Nanotechnology in Healthcare
Nanotechnology provides several potential solutions for many life-threatening diseases. Learn more ....
Drug Delivery System
Drug delivery systems, is a technology using various chemicals to bind the target drugs, carry them ...
Assisted Reproductive Technologies
Assisted reproductive technologies include all measures involving the manipulation of gametes and .....
Telemedicine
Telemedicine refers to the use of information and communication technology to provide health care .....
Antibiotics
Antibiotics are among the most used and abused medications. This article explains some general featu...
Drug Toxicity
Drug toxicity is an adverse reaction of the body towards a drug that results as a side effect of a d...
Drugs Banned in India
Several drugs are either banned or withdrawn after introduction in the market....
MRSA - The Super Bug
MRSA infection is the most dreaded hospital or community acquired infection that can become ......
Shigellosis
Shigellosis or Bacillary Dysentery is a common cause of gastro-enteritis worldwide and can cause blo...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use