About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Nanosurface Opens Up New Front in Germ-Killing

by Bidita Debnath on November 27, 2013 at 11:07 PM
Font : A-A+

 Nanosurface Opens Up New Front in Germ-Killing

Imagine a door handle, hospital room or kitchen countertop that is free from bacteria and not one drop of disinfectant or boiling water or dose of microwaves has been needed to zap the germs.

That is the idea behind a startling discovery made by scientists in Australia.

Advertisement

In a study published on Tuesday in the journal Nature Communications, they described how a dragonfly led them to a nano-tech surface that physically slays bacteria.

The germ-killer is black silicon, a substance discovered accidentally in the 1990s and now viewed as a promising semiconductor material for solar panels.
Advertisement

Under an electron microscope, its surface is a forest of spikes just 500 nanometres (500 billionths of a metre) high that rip open the cell walls of any bacterium which comes into contact, the scientists found.

It is the first time that any water-repellent surface has been found to have this physical quality as bactericide.

Last year, the team, led by Elena Ivanova at Swinburne University of Technology in Melbourne, were stunned to find cicada wings were potent killers of Pseudomonas aeruginsoa -- an opportunist germ that also infects humans and is becoming resistant to antibiotics.

Looking closely, they found that the answer lay not in any biochemical on the wing, but in regularly-spaced "nanopillars" on which bacteria were sliced to shreds as they settled on the surface.

They took the discovery further by examining nanostructures studding the translucent forewings of a red-bodied Australian dragonfly called the wandering percher (Latin name Diplacodes bipunctata).

It has spikes that are somewhat smaller than those on the black silicon -- they are 240 nanometres high.

The dragonfly's wings and black silicon were put through their paces in a lab, and both were ruthlessly bactericidal.

Smooth to the human touch, the surfaces destroyed two categories of bacteria, called Gram-negative and Gram-positive, as well as spores, the protective shell that coats certain times of dormant germs.

The three targeted bugs comprised P. aeruginosa, the notorious Staphylococcus aureus and the ultra-tough spore of Bacillus subtilis, a wide-ranging soil germ that is a cousin of anthrax.

The killing rate was 450,000 bacterial cells per square centimetre per minute over the first three hours of exposure.

This is 810 times the minimum dose needed to infect a person with S. aureus, and a whopping 77,400 times that of P. aeruginosa.

If the cost of making black silicon is an obstacle, many other options are around for making nano-scale germ-killing surfaces, said the scientists.

"Synthetic antibacterial nano-materials that exhibit a similar effectiveness... can be readily fabricated over large areas," they wrote.

Source: AFP
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
Health Benefits of Sea Buckthorn
Contraceptive Pills in Polycystic Ovary Syndrome (PCOS) Curtail Type 2 Diabetes Risk
Mushroom May Help Cut Down the Odds of Developing Depression
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.


Recommended Reading
Study Measures Impact of Information on Hand Hygiene Compliance
A study at Rhode Island Hospital observed staff on 161,526 occasions to monitor how often they ......
Paper Towels Better Than Electric Dryers for Hand Hygiene
A new study has indicated that paper towels might be a better option for hand hygiene than electric ...
Proper Hygiene can Prevent Spread of H7N9, Says UN
A strict hygiene and keeping different breeds of animals apart, if carried out, can curb the spread ...
Good Oral Hygiene Wards Off Stroke Risk
Regular dental visits and keeping the teeth clean can help prevent conditions that can lead to a ......

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use