About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Mutated X-linked Mental Retardation Protein and How It Impairs Neuron Function

by Dr. Enozia Vakil on June 25, 2014 at 6:18 PM
Font : A-A+

 Mutated X-linked Mental Retardation Protein and How It Impairs Neuron Function

Malfunctions in brain cells that contribute to intellectual disability and other brain disorders have now been studied better.

Professor Linda Van Aelst of Cold Spring Harbor Laboratory (CSHL) has been scrutinizing how the normal version of a protein called OPHN1 helps enable excitatory nerve transmission in the brain, particularly at nerve-cell docking ports containing AMPA receptors (AMPARs). Her team's new work, published June 24 in the Journal of Neuroscience, provides new mechanistic insight into how OPHN1 defects can lead to impairments in the maturation and adjustment of synaptic strength of AMPAR-expressing neurons, which are ubiquitous in the brain and respond to the excitatory neurotransmitter glutamate.

Advertisement

Mutations in a gene called oligophrenin-1 (OPHN1) - located on the X chromosome - have previously been linked to X-linked intellectual disability (also known as X-linked mental retardation), a condition that affects boys disproportionately and could account for as much as one-fifth of all intellectual disability among males.

Several different mutations in the OPHN1 gene have been identified to date, all of which perturb nerve cells' manufacture of OPHN1 protein. Previously, Van Aelst and colleagues demonstrated that OPHN1 has a vital role in synaptic plasticity, the process through which adjacent nerve cells adjust the strength of their connections. Cells in the brain are constantly adjusting connection strength as they respond to streams of stimuli.
Advertisement

The new discovery shows how OPHN1 is involved in the trafficking of AMPARs, an essential feature of plasticity in neurons. Neurons move receptors away from synapses into their interior and then back to the surface of synapses to control connection strength. At the synaptic surface, receptors provide an opportunity for the docking of neurotransmitters, in this case glutamate molecules. After a cell has fired, surface receptors are typically brought back into the interior, where they are recycled for future use.

When OPHN1 is misshapen or missing due to genetic mutation, the CSHL team demonstrated, it can no longer properly perform its role in receptor recycling, thus also impairing neurons' ability to maintain strong long-term connections with their neighbors, called long-term potentiation.

Van Aelst's new experiments explain how OPHN1 in complex with another protein called Homer1b/c should normally interact with an area called the endocytic zone (EZ) to provide a pool of AMPARs to be brought to the synapse at a location called the post-synaptic density (PSD). When OPHN1 is mutated, the pool does not form and receptors needed for strengthening synapses are not available. Long-term potentiation is impaired.

"This suggests a previously unknown way in which genetic defects in OPHN1 can lead to dysfunctions in the glutamate system," says Dr. Van Aelst. "Our earlier studies had already shown that OPHN1 is essential in stabilizing AMPA receptors at the synapse. Together, these two essential roles suggest how defective OPHN1 protein may contribute to pathology that underlies X-linked intellectual disability."



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
Health Benefits of Sea Buckthorn
Contraceptive Pills in Polycystic Ovary Syndrome (PCOS) Curtail Type 2 Diabetes Risk
Mushroom May Help Cut Down the Odds of Developing Depression
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Parkinsons Disease Parkinsons Disease Surgical Treatment Down Syndrome Magical Millets for Your Health Diet and Nutrition Tips for Athletes Nutrition IQ Intellectual disability Coffin-Lowry Syndrome DOOR Syndrome / Rare Genetic Disorder 

Recommended Reading
Parkinsons Disease
Parkinson's disease is a neurodegenerative disease caused by progressive dopamine brain cells loss. ...
Amyotrophic Lateral Sclerosis (ALS)
Find out more about the degenerative disease- Amyotrophic lateral sclerosis....
Coffin-Lowry Syndrome
Find the facts of coffin-Lowry syndrome including Symptoms, Causes, Treatment, Diagnosis, Prevention...
Diet and Nutrition Tips for Athletes
Athletes can be physically fit by consuming a well balanced nutritious diet, which keeps them mental...
DOOR Syndrome / Rare Genetic Disorder
DOOR syndrome is a rare genetic disorder marked by deafness, short or absent fingernails, abnormal d...
Down Syndrome
Down Syndrome is a congenital disorder among children commonly born to older mothers. The condition ...
Intellectual disability
Intellectual disability is a developmental delay that is significantly below average compared to pee...
Magical Millets for Your Health
Millets are far more nutrient dense than wheat and rice. They are inexpensive and tasty too. Nutriti...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use